

A Unified Framework for Knowledge Intensive Gradient Boosting: Leveraging Human Experts for Noisy Sparse Domains Harsha Kokel, Phillip Odom, Shuo Yang, Sriraam Natarajan



STARLINGLAB

#### Motivation

> Can we leverage domain knowledge – like monotonic influence for regions where we do not have data (R5) or data is noisy (R1-R2) while using boosting methods?



#### Formulation

> When monotonic influence is indicated by an expert, the expected value of left subtree should be no more than the right subtree



## Results

## **Baselines**

- LGBM LightGBM gradient boosting
- LMC LightGBM monotonic boosting
- SGB Scikit-learn gradient boosting
- MONO Monoensemble (Bartley et al. 2019)
- Comparison with 15 standard (10 regression and 5) classification) datasets is in the paper
- > **KiGB** performs better than standard boosting and existing monotonic boosting approaches in most of the domains
- Comparison on real world dataset Logistics dataset from **Turvo** Inc. and HELOC dataset

> Monotonic influence: when higher values of variable a stochastically results in higher values of variable y



## > Why monotonic influence?

Most of the market trends can be expressed as monotonic or synergic influence

# Key aspect - Avoids overfitting

 $\succ$  When the data violates the advice (region R1 & R2 below), LGBM monotonic boosting approach overfits the data, KiGB on the other hand allows for trade-off between data and advice



loss function w.r.t data loss function w.r.t. advice

> Update equation  $\psi_t^{\ell}(\mathbf{x}) = \frac{1}{|\ell|} \sum_{i=1}^N \tilde{y}_i \cdot \mathbb{I}(x_i \in \ell) +$ mean  $\frac{\lambda}{2} \sum_{\mathbf{n}} \mathbb{I}(\zeta_{\mathbf{n}} > 0) \zeta_{\mathbf{n}} \cdot \left( \frac{\mathbb{I}(\boldsymbol{\ell} \in \mathbf{n}_{\mathsf{R}})}{|\mathbf{n}|^{1}} \right)$  $\mathbb{I}(\boldsymbol{\ell} \in \mathbf{n}_{\mathsf{L}})$  $|\mathbf{n}_{\mathsf{L}}|$  $\mathbf{n} \in \mathcal{N}(\mathbf{x}_c)$ penalty for advice violation

# Algorithm

#### **Knowledge-intensive Gradient Boosting (KiGB)**

INPUT: Data (x, y), # trees M, monotonic features  $\mathbf{x}_c$ ,  $\lambda$ ,  $\varepsilon$ OUTPUT:  $\psi(\mathbf{x})$ 

- 1: **function** KiGB( $\mathbf{x}, y, M, \mathbf{x}_c, \lambda, \varepsilon$ )
- $\psi(\mathbf{x}) = \psi_0(\mathbf{x}) = \text{mean}(y)$
- for m = 1 to M do
- ▶ Compute gradient  $\tilde{y} = y - \psi(\mathbf{x})$  $\psi_m(\mathbf{x}) = \text{tree}(\tilde{y}, \mathbf{x}) \triangleright \text{Learn the next tree}$ 5: for  $\ell$  in  $\psi_m$  do 6:  $\psi_m^{\ell}(\mathbf{x}) = \psi_m^{\ell}(\mathbf{x}) + \text{penalty}^{\ell}(\mathbf{x}_c, \lambda, \varepsilon)$ 7: Update leaf values

#### from **FICO** (xML challenge Neurips 2018)

| Dataset          | KiGB  | LGBM  | LMC   |
|------------------|-------|-------|-------|
| Logistics(mse)   | 1.851 | 1.898 | 1.889 |
| Dataset          | KiGB  | SGB   | MONO  |
| HELOC (accuracy) | 0.717 | 0.7   | 0.688 |

achieves a jump start and higher > KiGB asymptote in performance



- $\succ$   $\varepsilon$  and  $\lambda$  allows for trade-off between data and advice, thus making KiGB robust to noisy data/advice
- **KiGB** is robust to choice of hyperparameters:  $\lambda$  and  $\varepsilon$





KiGB with  $\lambda = 8$ **R**2 0.97 0.9

R5

- end for 8:
- $\psi(\mathbf{x}) = \psi(\mathbf{x}) + \psi_m(\mathbf{x})$  > Update the function 9:
- end for 10:
- return  $\psi(\mathbf{x})$ 11:
- 12: end function

Code and paper is available on the website



# Conclusion

- **First** unified framework to handle qualitative constraints inside FGB • Regression and classification
- > Easily extendable to relational settings
- > Allows for a natural human-machine interaction
- Next step Actively soliciting such advice during boosting

Human knowledge can help gradient boosting achieve

## efficient and effective performance in noisy sparse domains.



0.94

R5

This research was supported by Turvo Inc. and CwC Program Contract W911NF-15-1-0461 with the US Defense Advanced Research Projects

Agency (DARPA) and the Army Research Office (ARO)

