

## Integrating Relational Planning and Reinforcement Learning for Effective Abstraction



Harsha Kokel



Sriraam Natarajan





Balaraman Ravindran





Arjun Manoharan





Prasad Tadepalli



# **RL** and **Planning**

#### Reinforcement Learning

- + Proven successful in complex games
- + Adaptive and robust against uncertainities
- Relies on huge amount of data
- Not effective for long-horizon problems
- Generalization to different task

#### Planning

- + Not data but prior-knowledge
- + Better generalization
- May not capture uncertainties

# Planner + RL

- Policy Sketches<sup>1</sup> for modular policies that address multi-task RL
- PLANQ-learning<sup>2</sup> uses planner to shape reward function that guides the Q-learner.
- PEORL<sup>3</sup> (Planning-Execution-Observation-Reinforcement-Learning) framework uses symbolic planner to guide the exploration and learning in RL
- TMP-RL<sup>5</sup> and PDDL+HER<sup>6</sup> framework use integrated approach for robotic systems with uncertainty and continuous state space
- Taskable-RL<sup>7</sup> formalizes the high-level planner and low-level RL executioner setup

<sup>1</sup>Andreas, Klein, and Levine ICML 2017

<sup>2</sup>Grounds and Kudenko, AAMAS 2008; <sup>3</sup>Yang, Lyu, Liu, and Gustafson IJCAI 2018; <sup>5</sup>Jiang, Yang, Zhang, and Stone, IROS 2019; <sup>6</sup>Eppe, Nguygen, and Wermter, Front. in Rob. and AI 2019; 7Illanes, Yan, Icarte, and McIlraith ICAPS 2020

# Motivation

Relational domains







# Motivation

#### **Abstract Representations**





## Planning

## Execution

 Plan the sequence of high level subgoals and learn to execute each subgoal at lower level



Goal directed relational MDP: <S, A, P, R, γ, G> state p1



**Definition 3.** The subgoal RMDP  $M_o$  for each operator o is defined by the tuple  $\langle S, A, P_o, R_o, \gamma \rangle$  consisting of states S, actions A, transition function  $P_o$ , reward function  $R_o$ , and discount factor  $\gamma$ . State and Actions remain same as the original RMDP. The reward function  $R_o$  and transition probability distribution function  $P_o$  are defined as follows:

$$R_{o}(s, a, s') = \begin{cases} t_{R} + R(s, a, s') & \text{if } s' \in \beta(o) \text{ and } s \notin \beta(o) \\ 0 & \text{if } s' \in \beta(o) \text{ and } s \in \beta(o) \\ R(s, a, s') & \text{otherwise} \end{cases}$$
$$P_{o}(s, a, s') = \begin{cases} 0 & \text{if } s \in \beta(o) \text{ and } s' \notin \beta(o) \\ 1 & \text{if } s \in \beta(o) \text{ and } s' \notin \beta(o) \\ P(s, a, s') & \text{otherwise} \end{cases}$$

with R(s, a, s') indicating the reward function from the original GRMDP definition.  $t_R$  is a fixed terminal reward.

- Plan the sequence of high level subgoals and learn to execute each subgoal at lower level
- Advantage:
  - Compositionality
  - Task specific state representations
- Dynamic First Order Conditional Influence (D-FOCI) statements to obtain taskspecific abstract representations



# **D-FOCI**

First Order Conditional Influence (FOCI) statements

if *condition* then X1 influence X2

**Dynamic FOCI statements** 

$$\mathrm{sub-task}: X1 \overset{+1}{\longrightarrow} X2$$



Natarajan, Tadepalli, Dietterich, and Fern 2008







task1(x): 
$$(Y \rightarrow X) \xrightarrow{+1} (X)$$
  
task1(x):  $(X) \xrightarrow{+1}$  Reward



task1(x): 
$$(x) \rightarrow (x) \rightarrow (x) \rightarrow (x)$$
  
task1(x):  $(x) \rightarrow (x) \rightarrow (x)$   
Heward





task1(x): 
$$(x) \rightarrow (x) \rightarrow (x) \rightarrow (x)$$
  
task1(x):  $(x) \rightarrow (x) \rightarrow (x)$   
Heward





task1(x):
$$\checkmark \rightarrow ~$$
 $+1 \rightarrow ~$ task1(x): $\checkmark \rightarrow ~$  $+1 \rightarrow ~$ task1(x): $\checkmark \rightarrow ~$  $+1 \rightarrow ~$ task1(x): $\checkmark \rightarrow ~$ Reward





**Definition 4** (Li, Walsh, and Littman (2006)). A modelagnostic abstraction  $\phi(s)$  is such that for any action a and abstract state  $\overline{s}$ ,  $\phi(s_1) = \phi(s_2)$  if and only if

$$\sum_{\{s_1' \mid \phi(s_1') = \overline{s}\}} R_o(s_1, a, s_1') = \sum_{\{s_2' \mid \phi(s_2') = \overline{s}\}} R_o(s_2, a, s_2')$$

$$\sum_{\{s_1' \mid \phi(s_1') = \overline{s}\}} P_o(s_1, a, s_1') = \sum_{\{s_2' \mid \phi(s_2') = \overline{s}\}} P_o(s_2, a, s_2')$$

Dietterich NeurIPS 2000; Ravindran and Barto IJCAI 2003; Givan, Dean, and Greig AI 2003; Li, Walsh, and Littman ISAIM 2006

**Definition 4** (Li, Walsh, and Littman (2006)). A modelagnostic abstraction  $\phi(s)$  is such that for any action a and abstract state  $\overline{s}$ ,  $\phi(s_1) = \phi(s_2)$  if and only if

$$\sum_{\{s'_1 | \phi(s'_1) = \overline{s}\}} R_o(s_1, a, s'_1) = \sum_{\{s'_2 | \phi(s'_2) = \overline{s}\}} R_o(s_2, a, s'_2)$$
$$\sum_{\{s'_1 | \phi(s'_1) = \overline{s}\}} P_o(s_1, a, s'_1) = \sum_{\{s'_2 | \phi(s'_2) = \overline{s}\}} P_o(s_2, a, s'_2)$$



Dietterich NeurIPS 2000; Ravindran and Barto IJCAI 2003; Givan, Dean, and Greig AI 2003; Li, Walsh, and Littman ISAIM 2006

{taxi-at(L1), move(Dir)}  $\xrightarrow{+1}$  taxi-at(L2) {taxi-at(L1), move(Dir)}  $\longrightarrow R$ pickup(P):

{taxi-at(L1), at(P, L), in-taxi(P)}  $\xrightarrow{+1}$  in-taxi(P) pickup(P): in-taxi(P)  $\longrightarrow R_o$ 

D-FOCI for Taxi pickup task



- Get high level plan
- For each subgoal
  - Loop till the
    - Get the a
    - Get the p
    - Take a ste next state
    - Update the state

# **RePReL Learning**

- Get high level plan
- For each subgoal
  - Loop till the subgoal is achieved
    - Get the abstract state
    - Get the policy for that subgoal
    - Take a step and observe reward, next state
    - Update the policy using abstract state

Algorithm 1 RePReL Learning Algorithm

```
INPUT: \mathfrak{P}(O, M), goal set g, env, t_R, F
OUTPUT: RL policies \pi_o, \forall o \in O
 1: \pi_o \leftarrow 0, \forall o \in O
                                     ▷ initialize RL policy for each operator
 2: for each episode do
           s \leftarrow get state from env
 3:
          \Pi \leftarrow \mathfrak{P}(s,g)
 4:
                                                               \triangleright get high-level plan
 5:
           for o_a in \Pi do
               \pi \leftarrow \pi_o
                                                               \triangleright get resp. RL policy
 6:
                \hat{s} \leftarrow \text{GetAbstractState}(s, o_a, F)
 7:
                                                             ▷ check terminal state
                done \leftarrow \hat{s} \in \beta(o_a))
 8:
                while not done do
 9:
10:
                     a \leftarrow \pi(\hat{s})
                                                                            \triangleright get action
11:
                     s' \leftarrow \text{env.step}(a)
                                                                    \triangleright take step in env
                     r \leftarrow R(s, a, s')
12:
                                                                    \triangleright get step reward
                     \hat{s}' \leftarrow \text{GetAbstractState}(s, o_a, F)
13:
                     done \leftarrow \hat{s}' \in \beta(o_q)
                                                      ▷ check terminal next state
14:
15:
                     if done then
16:
                                                             ▷ add terminal reward
                          r = r + t_R
17:
                     end if
18:
                     \pi.update(\hat{s}, a, \hat{s}', r)
                                                                       \triangleright update policy
19:
                     s, \hat{s} \leftarrow s', \hat{s}'
                end while
20:
21:
           end for
22: end for
23: return \pi_o, \forall o \in O
```

# Experiments





### Domains

- Office World
- Craft World
- Relational Taxi
- Relational Box World
- Baselines
  - HRL (options framework)
  - TRL (Taskable RL, Illanes et al. 2020)





# Experiments

- Sample efficiency
- Transfer across task
- Generalization across objects





trl: Taskable RL (Illanes et al. ICAPS 2020)

# Experiments

- Sample efficiency
- Transfer across task
- Generalization across objects







#### Office World





## **CRAFT WORLD**









### **Relational Box World**



Collect key and open lock

#### Generalization across objects









For human-level general intelligence, the ability to detect compositional structure in the domain and form task-specific abstractions are necessary.

# Other relevant work

- Learning the high-level planner [Ludovico et al IJCLR 2021]
- Modify the plan based on RL agents capability [Lyu et al AAAI 2019]
- Automating task termination condition [Lee et al 2021]
- Learning task-specific state representation [Abdulhai et al. 2021]
- Learning to plan and act simultaneously [Patra et al Al 2021]
- Improving Robot Navigation [Wöhlke et al. ICRA 2021]
- Extending the RePReL framework to Deep RL setting (under prep)



# QUESTIONS?



# THANKS







| Given | State          | $egin{aligned} &	ext{at}(p1,r), 	ext{taxi-at}(13), 	ext{dest}(p1,y),  eginarrow 	ext{at}(p1),  eginarrow 	ext{int}(p1),  ext{at}(p2,b), 	ext{dest}(p2,g),  eginarrow 	ext{at-dest}(p2),  eginarrow 	ext{int}(p1) \end{aligned}$                                                                                                       |
|-------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | subtask        | $\langle \ \mathrm{pickup}(P), \{P/p1, L/r\} angle$                                                                                                                                                                                                                                                                                   |
|       | D-FOCI         | $ \begin{aligned} & \{ taxi-at(L1), move(Dir) \} \stackrel{+1}{\longrightarrow} taxi-at(L2) \\ & \{ taxi-at(L1), move(Dir) \} \stackrel{+1}{\longrightarrow} R \\ & pickup(P): \\ & \{ taxi-at(L1), at(P, L), in-taxi(P) \} \stackrel{+1}{\longrightarrow} in-taxi(P) \\ & pickup(P): in-taxi(P) {\longrightarrow} R_o \end{aligned}$ |
|       |                |                                                                                                                                                                                                                                                                                                                                       |
| Get   | Abstract state | $\{\mathrm{at}(\mathrm{p1},\mathrm{r}),\mathrm{taxi-at}(13),\neg\mathrm{in-taxi}(\mathrm{p1}),\mathrm{move}(\mathrm{Dir})\}$                                                                                                                                                                                                          |