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Abstract
We present a novel graph sparsification approach for semi-
supervised learning on undirected attributed graphs. The
main challenge is to retain few edges while minimize the
loss of node classification accuracy. The task can be math-
ematically formulated as a bi-level optimization problem. We
propose to use meta-gradients, which have traditionally been
used in meta-learning, to solve the optimization problem, es-
sentially treating the graph adjacency matrix as hyperparam-
eter to optimize. Experimental results show the effectiveness
of the proposed approach. Remarkably, with the resulting
sparse and light graph, in many cases the classification ac-
curacy is significantly improved.

1 Introduction
Neural Networks designed for graph-structured data have re-
cently shown tremendous success in various domains, rang-
ing from social analysis, bioinformatics, natural language
processing to computer vision. See e.g., Zhang et al. (2018)
and Wu et al. (2020) for recent surveys. With the graph struc-
ture and node attributes as inputs, Graph Neural Network
(GNN) can focus on different learning tasks, including node
level, edge level and graph level tasks, and can be trained
in a supervised, semi-supervised, or unsupervised way. We
investigate the semi-supervised node classification task on
undirected graphs. In such task, given an attributed graph
with a small subset of labeled nodes, the goal is to predict
the labels of unlabeled nodes. See, e.g., Kipf and Welling
(2017); Veličković et al. (2018); Li et al. (2020).

Graph sparsification is a fundamental problem in graph
analysis. The goal is to approximate a given graph by a
sparse graph so that important properties (i.e., graph spec-
trum) are approximately preserved. See, e.g., Spielman and
Srivastava (2011); Spielman and Teng (2011); Fung et al.
(2019). In this work, we focus on the sparsification of a
graph that preserves the node classification accuracy of the
unlabeled nodes. Such sparsification fosters more effective
understanding of information propagation on graphs and
hence can be beneficial in wide range of graph-based deep
learning applications.

Gradient-based meta-learning is a well known approach
for learning-to-learn in numerous domains. It has several
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possible formulations. One way is to frame it as a bi-
level optimization procedure in which the “inner” opti-
mization represents adaptation to a specific task, and the
“outer” objective is the meta-learning objective. See, e.g.,
Finn, Abbeel, and Levine (2017); Zügner and Günnemann
(2019); Rajeswaran et al. (2019). In a well-known paper,
Model-Agnostic Meta-Learning (MAML) (Finn, Abbeel,
and Levine 2017), such a formulation is used to learn the
initial parameters of stochastic gradient descent models. One
of the key challenges in gradient-based meta-learning is that
the computation of gradients of the meta objectives needs
to backpropagate through the inner optimization. If the in-
ner optimization goes on for many steps, the gradients of
the meta objectives vanish, and it also imposes computa-
tional and memory burdens. MAML proposes a first-order
approximation of the proposed approach. In Rajeswaran
et al. (2019), iMAML is proposed to further solve this prob-
lem, which depends only on the solution to the inner opti-
mization. Zügner and Günnemann (2019) shows how to use
meta-learning to solve the bi-level optimization for training-
time adversarial attacks on graphs.

Our approach
Inspired by these gradient-based meta-learning literature, we
propose to use meta-learning to reduce the number of edges
in the graph, concentrating on node classification task in
semi-supervised setting. Essentially, by treating the graph
structure as meta-parameter, the underlying optimization
problem is solved via meta-gradients. In our case, the in-
ner optimization is to train the model over labeled nodes
for predicting labels of unlabeled nodes, and the outer meta-
objective aims to eliminate edges with minimal impact on
the classification accuracy. The idea of using meta-learning
in this context appears to be novel, and can most likely be
applied in related situations, like feature selection or graph
classification task, that are not explicitly discussed in this
paper.

2 Related Work
A variety of semi-supervised learning methods exist in the
literature, like self-training and graph-based methods. See
e.g., Zhu (2005); Sheikhpour et al. (2017) for surveys. The
main idea of self-training is to first train a classifier on la-
beled data and then apply it to classify the unlabeled data.



A subset of the unlabeled data, together with their pre-
dicted labels are used in later learning process. See, e.g.,
Zhu and Goldberg (2009). Graph-based methods aim to con-
struct a graph connecting similar observations; label infor-
mation propagates through the graph from labeled to unla-
beled nodes. See, e.g., Kipf and Welling (2017); Veličković
et al. (2018). A variant of the proposed approach uses the
self-training method to compute the sparsifier’s loss on ac-
curacy, discussed in Section 3.

Graph Sparsification. One of the popular approaches
is the spectral sparsification technique. Spielman and Teng
(2011) introduced a spectral sparsification method based on
the similarity of graph Laplacians. In the paper (Spielman
and Srivastava 2011), the authors proposed to sample edges
in proportion to the effective resistance of an edge. With this
sampling approach, the graph Laplacian spectrum and re-
sistance distances between vertices are approximately pre-
served with high probability. Imre et al. (2020) presented a
spectrum-preserving sparsification algorithm for visualizing
big graph data. Other approaches, like cut sparsification and
structure-preserving sparsification, are also proposed. Cut
sparsification methods, e.g., (Fung et al. 2019), ensure that
the total weight of cuts in the resulting graph approximates
that of cuts in the original graph. For structure-preserving
sparsification methods, see e.g., (Satuluri, Parthasarathy, and
Ruan 2011; Hamann et al. 2016). While properties preserved
in these works are significantly important, they might not be
necessary for the graph classification or node classification
tasks. Rather, it is important to preserve the classification ac-
curacy. We hypothesize that directly targeting the accuracy
measure would work better for node classification, and for-
mulate a meta-learning based graph sparsification algorithm.

3 Problem Formulation and Notations
The problem addressed in this work is as follows. Given
an undirected attributed graph with labeled and unlabeled
nodes, the goal is to achieve the target graph sparsity while
minimize the node classification error over unlabeled nodes.

Let G=(A,X) be an undirected attributed graph with ad-
jacency matrix A ∈ {0,1}N×N and node attribute matrix
X ∈ RN×D, where N is the number of nodes and D is the
dimension of node features. Let V be the set of all nodes of
graph G which is the union of the subset of labeled nodes
VL ⊆ V and the subset of unlabeled nodes VU=V �VL. Each
node in VL is assigned one class in C = {c1, . . . , cK}. Let
YL be the labels of labeled nodes in VL. Let YU be the labels
of unlabeled nodes in VU , which is unknown.

Given graph G and labels YL, the goal of semi-supervised
learning for node classification is to learn a function f✓,
which maps each node v ∈ V to exactly one of the K classes
in C. The parameters ✓ of the function f✓ are learned by
minimizing a loss function Ltrain on the labeled nodes:

✓∗ = argmin
✓
Ltrain(f✓(G), YL). (1)

Let M be the number of nonzero values in the adjacency
matrix A. Then the number of edges of the undirected graph
G is M

2 . Let M̂ <M be the target number of nonzero values
in the adjacency matrix. The graph sparsification problem

can be mathematically formulated as a bi-level optimization
problem:

Ĝ∗ = min
Ĝ∈�(G)Lsps(f✓∗(Ĝ), YU)
s.t. ✓∗ = argmin

✓
Ltrain(f✓(Ĝ), YL). (2)

The �(G) is the admissible space of Ĝ. The achieved graph
sparsity is M̂

N(N−1) . The Lsps is the loss function that the
sparsifier aims to optimize. In the bi-level meta-learning
setup, the constraint in Equation 2, which is same as Equa-
tion 1, is the “inner” loop; the parameters ✓ are the task-
specific parameters. The minimizer for Lsps is the “outer”
loop; the parameters Ĝ ∈ �(G) are the meta-parameters.

Options for Lsps

In the task, the sparsifier tries to decrease the classification
error over unlabeled nodes. However, the labels for nodes in
VU are not available. The sparsifier cannot directly optimize
the Lsps. There are several options to approximate Lsps.

The first option is Lsps ≈ Ltrain. If a model has a high
training error, it typically cannot generalize well for the test
set; however the opposite is not true due to overfiting. In
our case, the sparsifier tries to simplify the graph. If there
is overfiting, the classifiers may work better on the simpli-
fied graph. This is confirmed experimentally. As discussed
in Section 2, self-training is a well-known method to aug-
ment the labeled data in semi-supervised learning. In our
case, the sparsifier can train a classifier on labeled data to
estimate the labels of unlabeled nodes. We refer the pre-
dicted labels as ŶU . Using the predicted labels the sparsifier
can perform self-learning and computeLsps on the unlabeled
nodes. This gives us the second option Lsps ≈ Lself, whereLself = L(f✓∗(Ĝ), ŶU). Another option is Lsps ≈ Lboth,
which is computed from YL and ŶU . In the Section 6, we
experimentally compare all the three options outlined above.

4 Meta-Gradients
We use meta-gradients to solve the bi-level optimization
problem in Equation 2. Gradient-based meta-learning has
traditionally been used to optimize hyperparameters, e.g.,
learning the initial parameters of a model (Finn, Abbeel, and
Levine 2017; Rajeswaran et al. 2019) and finding hyperpa-
rameters (Bengio 2000; Zügner and Günnemann 2019).

In our case, we treat the graph structure matrix as hyper-
parameter. We are interested in finding the graph structure
matrix satisfying the target sparsity. We compute the gradi-
ent of the sparsifier’s loss w.r.t the hyperparameter:

∇meta
Ĝ
∶=∇ĜLsps(f✓∗(Ĝ), YU),
s.t. ✓∗ = argmin

✓
Ltrain(f✓(Ĝ), YL). (3)

The meta-gradient indicates how the sparsifier loss Lsps
(the loss of classification accuracy on unlabeled nodes) will
change after training on the simplified graph.



The task in Equation 1 corresponds to multiple steps of
gradient descent starting from some initial parameters ✓0
with the learning rate ↵:

✓t+1 = ✓t − ↵∇✓tLtrain(f✓t(Ĝ), YL). (4)

We approximate ✓∗ by ✓T obtained after applying gradient
descent for T steps. Without loss of generality, the sparsi-
fier’s loss is written asLsps(f✓T (Ĝ)). The meta-gradient can
be calculated as:

∇meta
Ĝ
= ∇ĜLsps(f✓T (Ĝ))

= @Lsps(f✓T (Ĝ))
@f

[@f✓T (Ĝ)
@Ĝ

+ @f✓T (Ĝ)
@✓T

@✓T

@Ĝ
]

= ∇fLsps(f✓T (Ĝ))[∇Ĝf✓T (Ĝ) +∇✓T f✓T (Ĝ)∇Ĝ✓T ].
(5)

The parameters ✓T depend on the graph Ĝ. Thus, the deriva-
tive w.r.t the graph has to chain back until the initial param-
eters ✓0. In order to calculate the gradient ∇Ĝ✓T , we need to
calculate ∇Ĝ✓t for t = T − 1, . . . ,1 as follows:

∇Ĝ✓t+1 = ∇Ĝ✓t − ↵∇Ĝ∇✓tLtrain(f✓t(Ĝ))
∇Ĝ✓t = ∇Ĝ✓t−1 − ↵∇Ĝ∇✓t−1Ltrain(f✓t−1(Ĝ))
. . .

∇Ĝ✓1 = ∇Ĝ✓0 − ↵∇Ĝ∇✓0Ltrain(f✓0(Ĝ)).
(6)

Observe that it is expensive to calculate the gradient of
the meta objective using the above meta-gradients due to
the need of differentiating through the inner loop learn-
ing process. However, approaches to approximate the meta-
gradients are proposed, e.g., (Finn, Abbeel, and Levine
2017; Rajeswaran et al. 2019).

Now we can conduct the following meta-gradient descent:

Ĝk+1 = Ĝk − �∇ĜkLsps(f✓∗(Ĝk)), (7)

where Ĝ0 = G. The Ĝ∗ is obtained when the target graph
sparsity is achieved. However, the update in Equation 7 is
not possible with discrete graph-structured data. We discuss
this problem for graph sparsification in Section 5.

5 Graph Sparsification via Meta-Gradients
An undirected attributed graph G=(A,X) contains two
components: the adjacency matrix A ∈ {0,1}N×N and the
node attribute matrix X ∈ RN×D. In order to reduce the
graph in terms of edges, we compute the meta-gradients w.r.t
the adjacency matrix A with unchanged the attribute matrix
X . Analogously to Equation (3), the meta-gradients are de-
fined as follows:

∇meta
Â
∶=∇ÂLsps(f✓∗(Â,X), YU)
s.t. ✓∗ = argmin

✓
Ltrain(f✓(Â,X), YL). (8)

The adjacency matrix is modified in meta-gradient update in
Equation (7).

Algorithm 1 Graph sparsification via meta-gradients
Input: Graph G = (A,X); labels YL; number of edges to
delete ⇣; number of training steps T ; learning rate ↵.
Output: Ĝ∗ = (Â∗,X)

1: ŶU ← estimated labels of unlabeled nodes using self-
training;

2: Â← A;
3: while ⇣ > 0 do
4: ✓0 ← initialize randomly;
5: for t in 0 . . . T − 1 do
6: ✓t+1 = ✓t − ↵∇✓tLtrain(f✓t(Â,X), YL);
7: end for
8: ∇meta

Â
← ∇ÂLself(f✓T (Â,X), ŶU);

9: S = ∇meta
Â
⊙ Â;

10: e∗ ← the maximum entry (i, j) in S(i, j) that satis-
fies the constraints �(G);

11: Â← remove edge e∗;
12: ⇣ −= 1;
13: end while
14: Ĝ∗ ← (Â,X);
15: return Ĝ∗.

A two-layer graph convolutional network (GCN) (Kipf
and Welling 2017) is used to perform the reduction and eval-
uate the performance of the reduced graph for node classifi-
cation:

f✓(A,X) = softmax(A′�(A′XW1)W2),
where � is the activation function, A′ = D−1�2ÃD−1�2, Ã =
A + I , D is the degree matrix, ✓ is the set of learnable pa-
rameters in W1 and W2. However our proposed approach is
model-agnostic. Other graph networks, like graph attention
networks (GAT) (Veličković et al. 2018), can be used.

However, we are interested in the 0/1 problem, that is, an
edge is either kept or deleted. We cannot simply perform the
gradient decent as follows:

Âk+1 = Âk − �∇meta
Âk , with Â0 = A. (9)

Instead we introduce a score matrix S = ∇meta
Â
⊙ Â, perform-

ing element-wise production between the meta-gradients
and the adjacency matrix. We greedily pick the edge be-
tween the node i and j: e(i, j) with the highest score to be
eliminated:

e∗ = argmax
e(i,j)∈Â

e(i,j)∈�(G)
S(i, j). (10)

The edge e(i, j) should fulfill the constraint �(G) that the
deletion of e(i, j) should not lead to singleton nodes. In Al-
gorithm 1, we summarize the steps to sparsify graphs via
meta-gradients and self-training.

Interpretation of the score matrix. For graph sparsifica-
tion, we only consider meta-gradients with edges (Â(i, j) =
1). The values of meta-gradients where no edges are ze-
roed out by the element-wise production between the meta-
gradients and the adjacency matrix. Second, we prefer the
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Figure 1: Accuracy when performing with Ltrain on CITE-
SEER. Left: train-set; Right: test-set.
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Figure 2: Accuracy when performing with Lself on CITE-
SEER. Left: train-set; Right: test-set.

positive meta-gradients, as we want to modify Â(i, j) from
1 to 0. In addition, the meta-gradient indicates how the loss
will change after training on the modified graph. The above
statements explain the idea behind the score matrix.

6 Experimental Results
We evaluate the performance of the proposed approach
on two well-known datasets: CITESEER (Sen et al. 2008)
and CORA-ML (McCallum et al. 2000). The statistics of
datasets are shown in Table 1.

A two-layer graph convolutional network (GCN) (Kipf
and Welling 2017) is used to perform the sparsification and
evaluate the performance of the reduced graph for node clas-
sification. Followed from Zügner and Günnemann (2019),
the hidden size of GCN is 16. To compute the accuracy, the
classifiers are trained for 100 iterations and all experiments
are repeated for 20 times. The graphs are split into labeled
(10%) and unlabeled (90%) nodes. The labels of the unla-
beled nodes are only used for node classification accuracy
during testing phase. We compute the meta-gradients by us-
ing gradient descent with momentum for T = 50 iterations.

In Section 3, three methods are proposed to approximateLsps. The results on CITESEER dataset are shown in Fig-

Dataset NLCC ELCC D K
CORA-ML 2,810 7,981 2,879 7
CITESEER 2,110 3,668 3,703 6

Table 1: We consider the largest connected component
(LCC). NLCC: number of nodes; ELCC: number of edges.
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Figure 3: Accuracy when performing with Lboth on CITE-
SEER. Left: train-set; Right: test-set.
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Figure 4: Accuracy when using random selection on CITE-
SEER. Left: train-set; Right: test-set.

ures 1, 2 and 3. The results on CORA-ML dataset are shown
in Figures 5, 6 and 7. In addition, the results using random
selection are shown in Figures 4 and 8.

Surprisingly, using Ltrain in Figure 1 improves the test ac-
curacy, even 50% edges are deleted. From the training accu-
racy, the classifier might overfit when performing with the
original graph.

In Figure 6, using Lself, the edge deletion first improves
the test accuracy, and then the accuracy decreases as more
edges are deleted. The training accuracy shows that the ini-
tial edge deletion helps the classifier to fit the data. The re-
sult shows that about 20% edges can be eliminated without
hurting the classification accuracy.

Our experiments show that when the classifier overfits the
original graph, using Ltrain performs better. When the classi-
fier underfits the original graph, using Lself helps the classi-
fier fit the data.

7 Discussion and Future Work
The experimental results of using meta-gradients to reduce
the edges for graphs are very encouraging and interesting.
We need to further compare our approach with the conven-
tional graph sparsification techniques. We need to investi-
gate deeply by removing more number edges and experi-
menting on different datasets. We also need to evaluate the
transferability of our technique by using various gradient
descent models. The proposed approach can most likely be
applied in related situations, like feature selection or graph
classification, and can be generalized for attributed edges,
that are not explicitly discussed in this paper.
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Figure 5: Accuracy when performing with Ltrain on CORA-
ML. Left: train-set; Right: test-set.
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Figure 6: Accuracy when performing with Lself on CORA-
ML. Left: train-set; Right: test-set.
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Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.;
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