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Abstract

ExtraCorporeal Membrane Oxygenation (ECMO) is a
method of supporting patients with life-threatening res-
piratory or cardiac failure. In an effort to increase the
efficacy of the ECMO treatment, we utilize a Rein-
forcement Learning (RL) technique known as Batch Re-
inforcement Learning (Batch RL) which proves espe-
cially useful in situations limited to offline data. Ex-
tracting physician action data from Electronic Health
Records (EHR), our goal is to discover an optimal pol-
icy via Fitted Q-Learning, a type of Batch RL, from the
offline patient trajectories in order to optimize the set
of actions available at each state of the ECMO process.
While there is currently a lack of variability in the Q-
values for different actions in their respective states, we
believe this work opens the door to explore future av-
enues by methods such as synthesizing trajectories, re-
ward shaping, and action filtering.

The explosion of medical data available in the electronic
health record (EHR) allows increasingly fruitful automated
patient-based research using techniques of artificial intelli-
gence (Al) and machine learning (ML). These modalities
have had particularly remarkable success in evaluating and
classifying radiographic and other varieties of images (Topol
2019). Other successes include the elicitation of rule-based
treatment strategies from medical records (Skinner et al. ),
ascertaining the need for cardiac procedures (Yang et al.
2017), predicting drug success in the management of mental
illness (Chekroud et al. 2016), among others (Yu, Liu, and
Nemati 2019).

Another promising area through which ML and AI tech-
niques contribute to improved medical care is in the auto-
matic derivation of a patient management policy from the
EHR, which could be used to improve health care in a num-
ber of ways. For example, we could automatically discover
optimal policies for managing particular diseases. Moreover,
an optimal policy, once discovered, could be compared to a
patient’s actual clinical course; if there is a deviation, physi-
cians could be provided with suggestions for care. Finally,
the ability to extract medical polices from EHRs would en-
able predictions of patient prognosis and outcomes.
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Reinforcement learning (RL) is an Al technique for se-
quential decision making in which an agent explores a space
of states, taking actions and receiving rewards, aiming to
find the optimal policy mapping actions to states. This tech-
nique has been used in many medical applications (Yu, Liu,
and Nemati 2019). Moreover, in some cases, it appears that
the learning agent may be able to learn a policy that is supe-
rior to most of the policies that were followed by the physi-
cians. (Komorowski et al. 2018).

A challenge in the extraction of physician actions from
the medical record using RL is that an agent cannot ex-
plore the state space to investigate which actions are op-
timal. Rather, we must discover the best policy from a set
of patient trajectories, with the hope that the EHR informa-
tion is adequate to optimize over the set of actions avail-
able at each state. Thus, we must implement the RL tech-
nique known as “Batch reinforcement learning”, which will
be described below (Ernst, Geurts, and Wehenkel 2005;
Lange, Gabel, and Riedmiller 2012).

Methods
Exracorporeal membrane oxygenation

Extracorporeal membrane oxygenation (ECMO) is a method
of supporting patients with life-threatening respiratory or
cardiac failure. The technique requires surgical placement
of large cannulas in the neck or in the heart, and externally
circulating the patient’s blood through a system that oxy-
genates the blood and removes carbon dioxide. Reserved for
the most critically ill of patients, ECMO mortality can be
very high and even among survivors there are frequent treat-
ment complications (Lin 2017).

Patient data

We used de-identified medical data abstracted from EHRs
for 140 children treated at the Children’s Medical Center
of Dallas who survived their period of ECMO. The study
was performed in accordance with an exemption granted by
the University of Texas Southwestern Institutional Review
Board (IRB). The time on ECMO ranged from 6 to 985
hours, averaging 174 hours. For each hour of ECMO by-
pass, and for from 1 to 24 hours prior to cannulation (15
hours, on average), 40 physiologic and laboratory parame-
ters were recorded. Not every parameter was measured each



Table 1: Study parameters.

Parameter Units
Mean arterial pressure | mm Hg.
Heart rate beats/min
Respiratory rate breaths/min
pH none

pO2 mm Hg.
Pressure volume sensor | cm H20
Measured flow ml/kg-min

hour; for example, those exclusively associated with ongo-
ing bypass (such as pump flow) were only recorded while
the child was actually undergoing ECMO support.

The children underwent brain imaging after their period
of bypass to monitor for intracranial bleeding or stroke. In 74
cases (53 percent), a moderate or severe intracranial injury
was identified. Our overarching aim is to discover an ECMO
management policy that reduces the risk of such injuries.

We chose seven physiologic parameters thought to be the
most useful for managing the respiratory and hemodynamic
status of patients. These are tabulated, with the units of mea-
surement, in Table 1. For our analysis, we abstracted the ac-
tual physiologic values to take one of three values at each
time point denoting whether the value was in the normal
range, significantly decreased, or significantly elevated.

For use in the Batch RL algorithm, we extracted from the
patient trajectories 32215 (SARS’) tuples, representing an
initial state, action, reward and subsequent state. For each
tuple, reward shaping was performed by rewarding actions
that tended to normalize the patient’s physiologic state, and
penalizing those that resulted in a more abnormal state. A
final positive reward was assigned at the end of the trajec-
tory if the child exhibited normal brain scans, and a negative
reward otherwise.

Fitted Q-iteration for batch learning

Batch RL is a sub-field of RL, traditionally used to learn
an optimal policy in the setting where we lack a simulator or
an explorable environment. In this environment, the learning
agent must extract a policy from a fixed number of trajecto-
ries given a priori. Before explaining fitted-Q iteration for
Batch RL, we motivate the need for this algorithm by pro-
viding a brief background on Q-learning and highlight its
drawback for batch RL.

The Bellman optimality equation for the action-value
function (Q) is given as:

Q" (s,a) = ZT(S, a,s) [R (s,a,s")
s (1
+ymaxQ” (s',a)

where T'(s, a, ) is a transition probability of landing in
state s’ on taking action « in state s and R(s, a, s’) is a Re-
ward at state s’ reached on taking action a in state s’

In the dynamic programming, the above equation is im-
plemented as:
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s 2
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Q-Learning is a model-free approach to learn the ) values
by exploring the environment, i.e. performing actions based
on some policy. A table of () values for each state action
pair, Q(s, a), is maintained and the table is updated at every
step using the running average formula:

Q(s,a) «+ (1 —a)Q(s,a)+ () [R (s,a,s)
3)
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One major drawback of Q-learning is exploration-
overhead, as () value update is made after every action, it
needs lot of trajectories for convergence. Since in Batch RL
we have a fixed number of trajectories, we need to find a
more efficient algorithm.

When using function approximations, () values are esti-
mated by a function and after every action the function is
updated using following equation:

s.0) ¢ (1= a)f(ss)+a (o yma (1)) @

This asynchronous update in function approximation at-
tempting to improve the Q value of a single state after an ac-
tion might impair all other approximations. This inefficient
approximation is another major disadvantage of Q-learning
algorithms.

Gordon 1995 provided a stable function approximation
approach by separating dynamic programming step from
function approximation step. Effectively, He split the above
function update equation to two steps.

f'(s,a) «+r +7ma34<f (s',a") Vs,a
a’'e

f(s;a) < (1 —a)f(s,a) + O‘f,(sva)

He proved that this approximation is guaranteed to con-
verge and will result in better approximation.

Ernst, Geurts, and Wehenkel 2005 proposed fitted Q iter-
ation by borrowing the splitted approach from Gordon. The
approach proposes iterative approximation of () value by re-
formulating the Q-Learning as a supervised regression prob-
lem. Algorithm 1 shows procedure for fitted-Q learning.

(Ernst, Geurts, and Wehenkel 2005) proposed regres-
sion tree as a function approximators, but since then vari-
ous different approximation functions have been used. For
this project, we also focus on learning regression trees. We
ran the Fitted-Q learning algorithm for 100 iterations, after
which the trees and Q-values had converged.
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Algorithm 1 Fitted-Q Iteration Action Mean Reciprocal Rank
INPUT: tuples < s,a,r,s" >, ~y, stopping condition
OUTPUT: Q(s, ) Heart Rate c.lecr 0.5462
. Heart Rate incr 0.5003
1: function Fitted —Q
7. Q(s,a) =0 MAP decr 0.599
3: while not stoppingcondition do MAP incr 0.4313
> Generate regression dataset Measured Flow decr 0.6646
4: X =<s,a> > features -
5: Y =7 +ymazsQ(s',a’) > regression values Measured Flow incr 04071
6: Q(s,a) =learn(X,Y) pH decr 0.5238
e Fit a regression function on the dataset pH incr 0.6486
7 end while
8: return Q(s, ) pO2 decr 0.9048
9: end function pO2 incr 0.7734
Pressure Volume Sensor decr 0.4266
Results Pressure Volume Sensor incr 0.5355
It is instructive to examine a list of Q-values for a repre- Resp Rate decr 0.5971
sentative state. Notably, there is not much variability in the Resp Rate incr 0.6944
expectec} value.that accrues following the d'ifferent actions, No Action 02
as seen in . This suggests that acting greedily at each state
(to improve the physiologic status of the patient) is not asso- Overall ‘ 0.5916

ciated with a significant gain in expected value.

895.54 | 808.45 | 895.54 | 895.54 | 810.45 | 895.54
895.54 | 895.54 | 895.54 | 895.54 | 804.18 | 998.55
895.54 | 808.65 | 895.54 | 895.54 | 895.54

Table 2: Vector of Q values for different actions and state:
(—1,0,0,0,0,0,0)

To formally evaluate how well we were able to encour-
age the agent to select the best action greedily, we computed
the mean reciprocal rank (MRR) of the optimal action for
each state, obtained from a domain expert. The MRR values
obtained for each of the actions is presented in Table . In-
terestingly, despite the fact that the expected rewards do not
appear to vary significantly across the possible actions, for
most of the actions, the optimal action ranked between 2 and
3 among the 17 action choices.

Two of the possible actions, “cannulate” and “decannu-
late” occur rarely- once each per trajectory. To investigate
how the exclusion of these uncommon actions might affect
our results, we rebuilt the model and recomputed the MRR
values, shown in figure 1 .Interestingly, the MRR values
demonstrate marked improvement.

Discussion and future directions

This preliminary work suggests a number of future avenues
of research. In our experiments, we used domain-expertise
to assign a reward value to each action in the patient trajec-
tory, rewarding actions that tend to move the patient’s state
in the direction of normal physiology. It is interesting to note

Table 3: Mean Reciprocal Rank (MRR) for each action and
over all the actions.
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Figure 1: Mean Reciprocal rank comparison: including all
actions vs reduced actions by removing the “cannulate” and
“decannulate”.

that when we look at the Q-values in the model, there is very
little discrimination in expected reward among the 17 possi-
ble actions; the expected reward is pretty constant among
all of the states, over all of the actions. It is possible that
the data are simply non-informative, and are not amenable
to our policy discovery aim. Alternatively, alterations in our
hand-crafted reward shaping may improve our predictions-
perhaps by assigning higher rewards to actions tending to
correct more important physiologic aberrations. We will also
see how the results change in the absence of any rewarding
during the trajectories, relying only on the reward based on
the final state of the patient.

We noted above that the removal of the “cannulate” and



“decannulate” actions seems to improve the MRR values,
suggesting an increased correlation between the best greedy
action and the expected reward over the entire trajectory. To
further investigate this phenomenon, we will consider ex-
cluding the states prior to placing the patient on ECMO by-
pass, thereby modeling the patient course only after cannu-
lation has occurred.

Finally, having extracted the Q-values for each state and
action, we are in a position to synthesize trajectories by sam-
pling our initial states, and then taking the action at each
state maximizing the Q-value. We will thereby determine
whether such a regime increases the expected value of the
start state.
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