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* Assumed homogeneous and obtained from a single source



Motivation
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Source of information may differ
Type of data might be different



Given: A sequential decision making problem with a
combination of structured and unstructured data.

To Do: Develop a hybrid architecture that learns to act.




Structured Data:

= Symbolic representations like tabular data, predicate logic,
knowledge graph, etc

Unstructured Data:
= Raw, free-form data like text, image, audio, etc




Structured Data:

= Passenger’s details
at(pl,11), dest(pl,dl)

at(p2,12), dest(pl,d2)

Unstructured Data:

= Taxi Location }_
from images
= Geography
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RePRelL

Goal directed relational MDP:
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RePRelL

m Plan the sequence of high level subgoals
and learn to execute each subgoal at
lower level

m Advantage:

- Compositionality
- Task specific state representations
m Dynamic First Order Conditional Influence

statements to obtain task-specific
abstract representations

Kokel et al ICAPS 2021
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Hybrid Deep RePReL
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Hybrid Deep RePReL
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HD RePRelL Learning
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Experiments

m Sample efficiency

m Generalization across objects
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Experiments

m Sample efficiency

m Generalization across objects
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Summary

m Combined a symbolic planner with a Deep RL agent for information
fusion

m Provide a batch learning algorithm for RePReL framework

m Demonstrate sample efficiency, that is significant reduction in the
number of steps required for the model to learn an optimal policy for
the task

m Demonstrate efficient generalization over number of objects

m Provide hybrid approach for structured and unstructured data
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