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Relational and Human-Allied



How to facilitate generalizable, effective and 
efficient learning with human guidance?
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Non-IID domains with 
varying # objects and 
heterogeneous relations.



Abstract Representations

Planning Execution

Konidaris, G., 2019; Li et al 2006



Given:  Relational sequential decision-making 
domain 

To do:  Learn an efficient agent that  
• is compositional 
• can handle varying # of objects
• can generalize to different tasks
• can support task-specific representations
• can handle multi-modal data



RePReL

• Plan the sequence of high level 
subgoals and learn to execute 
each subgoal at lower level

Grounds and Kudenko 2008;  Yang et al. 2018; Jiang et al. 2019;  Eppe et al. 2019;  Illanes et al. 2020; Lee et al. 2020; 
Mitchener et al. 2022; Lyu et al. 2019; Goel et al. 2022; Planning and RL workshop
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abstract state



RePReL
Goal directed relational MDP:
<S, A, P, R, γ, G> 

Dietterich 1999



RePReL



RePReL
• Plan the sequence of high level 

subgoals and learn to execute each 
subgoal at lower level
• Advantage:

• Compositionality

• Task specific state representations

• Dynamic First Order Conditional 
Influence (D-FOCI) statements to 
obtain task-specific abstract 
representations

Kokel et al ICAPS 2021
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D-FOCI

First Order Conditional Influence (FOCI) 
statements 

Dynamic FOCI statements

Natarajan, Tadepalli, Dietterich, and Fern 2008

D-FOCI
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D-FOCI as Dynamic PLMs

First-order  

Time

Bayesian Network 
(BN)

Dynamic 
BN

Probabilistic 
Logic Models

(PLM, PRM, BLP, 
LBN, DAPER)

Dynamic 
PLM

Koller and Friedman 2009; 
Getoor and tasker  2007;  Raedt et al. 2016 



D-FOCI example



Abstraction

recursive grounding and unrolling process



RePReL Learning

initial state

action

state, reward
D-FOCI

Symbolic 
Planner

Abstraction Reasoner

Reinforcement Learners 

RePReL

subgoals

abstract state

• Initialize buffers
• Get high level plan
• For each subgoal 

• Loop till the subgoal is achieved         

or # steps exceeds

• Get the abstract state 
• Get the policy for that subgoal 
• Take a step and observe reward, 

next state
• Add <S, A, R, S> to the buffer

• Update the subgoal policy using 
samples from the buffers

Kokel et al. 2021a; Kokel et al. 2021b
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Manhaeve et al. 2018; Kokel et al. 2022



Given:  Relational sequential decision-making 
domain 

To do:  Learn an efficient agent that  
• is compositional 
• can handle varying # of objects
• can generalize to different tasks
• can support task-specific representations
• can handle multi-modal data



Experiments  

• Domains

• Office World

• Craft World

• Relational Taxi

• Relational Box World

• Fetch Pick and Place

• Baselines

• Tabular RL

• Deep RL (DDQN, PPO, SAC)

• Hierarchical RL (options framework)

• Planner + RL (Taskable RL)

• Deep Relational RL  (ReNN)

Illanes et al. 2020; Li et al 2020; 
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Sample Efficiency



Task Transfer

Deliver coffee Deliver  mailTabular



Task Transfer

25

CRAFT WORLD

Get wood and iron Make stick 
(at workbench, needs wood)



Varying # of objects

Transport 2 passengers Transport 3 passengers



Varying # of objects

27

Open lock Collect key and open lock Collect key and 
open 2 locks



Varying # of objects



Multi modal

Transport two passengerstransport one passenger Transport three passengers



30

Multi modal

Make Bread Build a house Break a rock



Given:  Relational sequential decision-making 
domain 

To do:  Learn an efficient agent that  
• is compositional 
• can handle varying # of objects
• can generalize to different tasks
• can support task-specific representations
• can handle multi-modal data



Summary

• Combined a symbolic planner with RL agents

• Provide a batch learning algorithm

• Demonstrate sample efficiency, that is significant reduction in the number of 
steps required for the model to learn an optimal policy for the task

• Demonstrate efficient generalization over number of objects

• Provide hybrid approach for structured and unstructured data

• Most importantly, the framework is planner agnostic and RL algorithm agnostic 



Future work
• Refine the D-FOCI statements

• Relax downward refinement 

• Partial observability and 
uncertainty over states

• Boolean task algebra style 
compositions



Questions? 
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