
Hybrid Deep RePReL: Integrating Relational
Planning and Reinforcement Learning

for Information Fusion
1st Harsha Kokel
Computer Science

The University of Texas at Dallas
Dallas, Texas, USA

hkokel@utdallas.edu

2nd Nikhilesh Prabhakar
Computer Science

The University of Texas at Dallas
Dallas, Texas, USA

nikhilesh.prabhakar@utdallas.edu

3rd Balaraman Ravindran
Robert Bosch Centre for Data Science

and Artificial Intelligence
Indian Institute of Technology

Chennai, India
ravi@cse.iitm.ac.in

4th Erik Blasch
Air Force Research Laboratory

Rome, NY, USA
erik.blasch.1@us.af.mil

5th Prasad Tadepalli
School of EECS

Oregon State University
Corvallis, Oregon, USA
tadepall@engr.orst.edu

6th Sriraam Natarajan
Computer Science

The University of Texas at Dallas
Dallas, Texas, USA

Sriraam.Natarajan@utdallas.edu

Abstract—Fusion of high-level symbolic reasoning with lower
level signal-based reasoning has attracted significant attention.
We propose an architecture that integrates the high-level sym-
bolic domain knowledge using a hierarchical planner with a lower
level reinforcement learner that uses hybrid data (structured
and unstructured). We introduce a novel neuro-symbolic system,
Hybrid Deep RePReL that achieves the best of both worlds—the
generalization ability of the planner with the effective learning
ability of deep RL. Our results in two domains demonstrate the
superiority of our approach in terms of sample efficiency as well
as generalization to increased set of objects.

Index Terms—Fusion, Reinforcement Learning, Structured
and Unstructured domains

I. INTRODUCTION

Recently, the neurosymbolic architectures are of interest
to the information fusion community for physics-based and
human-derived information fusion (PHIF) along the direc-
tions of emerging interest in ontologies, explainable Artificial
Intelligence (AI), and situational awareness. From the Data
Fusion Information Group (DFIG) model as related to the Joint
Director of the Labs (JDL) definitions, there are seven levels of
data processing. Low-level information fusion (LLIF) includes
L0 data preprocessing and L1 estimation and classification,
which are traditional methods in information fusion. The high-
levels of information fusion (HLIF) includes L2 situation
assessment, L3 threat assessment, L4 sensor management, L5
user refinement, and L6 mission management [1]. Thus, the
emerging developments in machine (ML), deep (DL), and
reinforcement learning (RL) align with HLIF.

Neurosymbolic architectures (NSAs) are attractive for hu-
man interaction with information fusion systems, especially
for question/answering when in the form of semantic queries
that include symbolic definitions, such as a dictionary of

terms. When using the NSA, the user queries a knowledgebase
from which a fusion inference engine produces an output
[2]. Using the motivation that information fusion seeks to
reduce uncertainty, the international society of information
fusion (ISIF) has created the Uncertainty Representation and
Reasoning Evaluation Framework (URREF) ontology [3]—a
knowledgebase of uncertainty terms and theory of mathemat-
ical processing. The use of the NSA for information fusion
enhances methods for situation assessment for complex event
processing (CEP). Vilamala et al. [4] introduce DeepProbCEP,
a hybrid NSA that leverages both a neural architecture, to
interpret raw data, and logical rules, to express patterns defin-
ing complex events, while allowing for end-to-end learning by
fusing videos and audio information for situation assessment.
The NSA improves sound and video accuracy [5] that can
be integrated into an information fusion architecture for user
refinement and assessment.

User refinement (UR), at least from the DFIG/JDL per-
spective, is an emerging topic for human-machine systems
concerning the use of DL/RL techniques [6]. Challenges for
UR include controlling many platforms [7], sensor tasks [7],
and mission needs. RL has been widely used in sensor man-
agement, but recent developments in deep RL (DRL) offers
the ability to incorporate DL methods (e.g., for classification
from multiple sensors) into control. RL combined with deep
symbolic learning supports an emergent challenge for DL
methods for explainability (for the user), interpretability (of the
machine), and transparency (of the data and ethical decisions).
The development of NSA with RL can enhance trust [8], and
control for human-agent knowledge systems [9].

Building a two-level neurosymbolic system that combines
a higher-order symbolic reasoner with a lower-level fast deep

learner is not only a long cherished dream but is one of the
more popular research directions inside AI [10]. Particularly,
exploring the combination of learning and neurosymbolic pro-
cessing in the context of sequential decision-making is quite
natural [11]–[13] given the recent success of DRL methods on
large-scale tasks [14]–[16].

We recently developed a combination of a higher-order
symbolic planner with a lower-level RL system called
RePReL [17], [18] to effectively construct abstractions to
accelerate learning in structured domains (with several inter-
acting objects that cannot be efficiently represented using a
fixed-length vector). RL in structured domains is inherently a
difficult task and only a small number of solutions exist [19]–
[21]. The RePReL system takes a first step in the direction of
combining (relational) planning and RL in solving structured
problems by using the planner to define a smaller set of
(abstract) state-action spaces to allow for efficient learning by
the lower level RL agent. The key success of the RePReL
method lies in its capability of generalization to a varying
number of objects.

While RePReL was successful, it had an important
assumption—the underlying features are discrete. That is to
say that the higher-order symbolic planner essentially operated
at the level of predicates defined in first-order logic and then
constructed appropriate grounded predicates as features for the
RL agent. This assumption restricts the RePReL approach in
two specific ways. First is that the power of DRL methods is
not effectively exploited. Second, the approach cannot fully
exploit the fusion of multi-modal data where the data could
arrive from multiple sources—images, text and potentially a
feature based descriptor.

This paper relaxes the discrete feature assumption and ex-
tends the RePReL framework to construct a Hybrid Deep Re-
lational Planning and Reinforcement Learning (HDRePReL)
architecture that fuses multi-modal information from two or
more sources. The key contributions of the paper include:
(1) We extend the standard RePReL architecture to handle
multi-modal data by fusing information from multiple sources.
(2) The resulting HDRePReL framework is a neurosymbolic
architecture that leverages the deliberative nature of a higher-
level planner with the fast learning nature of the lower level
deep network. (3) As far as we are aware, this is one of the
first works in the direction of combining relational planner
with DRL to address the problem of learning in structured, and
heterogeneous (discrete/continuous) domains. (4) Finally, our
empirical evaluations on two domains clearly demonstrate the
effectiveness of learning and the efficiency of generalization
and transfer across related tasks.

The rest of the paper is organized as follows. The next
section provides a background on RePReL. Then, Section
III presents the HDRePReL architecture. Section IV present
our empirical evaluations before concluding the paper by
presenting the directions for future research.

II. BACKGROUND

There has been a recent surge in combined planning and
reinforcement learning approaches for multi-task RL problems
[17], [22]–[28]. Among these, the RePReL architecture pro-
posed by Kokel et al. [17] provides a unique framework to
construct task-specific state abstractions. RePReL formulates
structured multi-task RL problems as goal directed relational
Markov Decision Process (GRMDP).

Definition 1: A GRMDP M is represented as a tuple
〈S,A, P,R, γ,G〉, where the states S and the actions A are
represented by a set of objects E, a set of predicates Q,
and action types Y . P is a transition probability function
S ×A× S → [0, 1], R is a reward function S ×A× S → R,
γ ∈ [0, 1) is the discount factor, and G is the set of goals that
the agent may be asked to achieve.

A problem instance for a GRMDP is defined by a pair
〈s ∈ S, g ∈ G〉, where s is a state and g is a goal condition,
both represented using sets of literals, i.e., positive and/or neg-
ative atoms. A solution is a policy that starts from s and ends
in a state satisfying g. The RePReL framework proposes to
solve the GRMDPs using a combination of planning and RL.
The RePReL architecture, shown in Figure 1, consists of three
stacked modules: Symbolic Planner, Abstraction Reasoner, and
RL agents.

1) Symbolic Planner: The symbolic planner uses the high-
level planning domain description to decompose the
goal into a sequence of temporally extended actions
called options. Essentially, the planner decomposes the
GRMDP into small sub-goal RMDPs.

2) Abstraction Reasoner: The abstraction reasoner gen-
erates a task-specific abstract state representation using
the dynamic first-order conditional influence statements
provided by a domain expert.

3) RL Agents: Finally, multiple reinforcement learners at
the lowest level learn separate RL policies for each
option in the abstract state space.

Fig. 1: RePReL architecture.

III. HYBRID DEEP REPREL

To address multi-task hybrid RL problems, with structured
and unstructured data, there is a need to incorporate data from
different sources. For convenience, the proposed approach
assumes the unstructured data is an image, but it can be
extended to other form of unstructured data verbatim.

Given: A combination of structured (object de-
scriptions as predicate logic representations) and
unstructured (images or text) data.
To Do: Develop a hybrid architecture that learns
to act.

Consider the scenario of a ride sharing app, the information
required for booking and riding a passenger arrives from
different sources. The local geography of the region is obtained
from a map, the location of the cab can be obtained from
the cab driver’s mobile, and the location of the rider and the
destination of the ride is obtained from the rider’s mobile.
In such cases, the information required for a ride can be a
conglomeration of many varied types of data coming from
different sources.

As a more concrete example, consider a hybrid taxi domain,
shown in Figure 2. There are two passengers in this domain
and one taxi. Six actions available in this domain are: east,
west, north, south, pick, drop. The task is to transport
passenger(s) from their current location to their destination
location. Only one passenger can hire the taxi at a time.
We consider three different sources of information in this
domain, the taxi location and the geography of the region is
available as an image from one source (cf Figure 2a); the cur-
rent location and the destination location of the passenger p1
is available from p1’s mobile as state predicates; and similarly
the current location and the destination of the passenger p2 is
available from p2’s mobile (cf Figure 2b). Hence, the state or
the observation from the environment is hybrid—consisting of
the structured data from passengers’ mobile and unstructured
image data with taxi location.

(a)

at(p1, l1), dest(p1, d1)

at(p2, l2), dest(p1, d2)

(b)

Fig. 2: (a) Taxi location and geography information available
as an image. (b) Passenger location and destination informa-
tion as state predicates from a passenger’s mobile.

Fig. 3: Proposed HDRePReL architecture.

For such hybrid RL domains, we extend the RePReL
framework and introduce hybrid deep RePReL (HDRePReL).
In HDRePReL, shown in Figure 3, we introduce an input
preprocessing module and a merge module to handle the
combination of structured and unstructured information. In
addition, there is an underlying DRL layer that allows for
learning with these hybrid inputs. The next section explains
each of these modules in greater detail.

A. Symbolic Planner

Given a problem instance of a GRMDP 〈s, g〉, the symbolic
planner provides a high-level plan Π = [o1, o2, ..., on] which is
a sequence of options (or temporally extended operators). Each
option o has predefined termination condition β(o), necessary
effects of the operator. A subgoal RMDP Mo is defined for
each option o, which is solved to obtain the option policy πo.

Definition 2: The subgoal RMDP Mo for an option o is
defined as a tuple 〈S,A, Po, Ro, γ〉 consisting of states S,
actions A, transition function Po, reward function Ro, and
discount factor γ. The state and action spaces remain same
as the original GRMDP. The reward function Ro and the
transition probability distribution function Po are defined as
follows:

Ro(s, a, s′) =

 tR +R(s, a, s′) if s′ ∈ β(o) and s /∈ β(o)
0 if s′ ∈ β(o) and s ∈ β(o)
R(s, a, s′) otherwise

Po(s, a, s′) =

 0 if s ∈ β(o) and s′ /∈ β(o)
1 if s ∈ β(o) and s′ ∈ β(o)
P (s, a, s′) otherwise

with a fixed terminal reward tR, and the reward function
R(s, a, s′) and the transition function P (s, a, s′) from the
original GRMDP.

Essentially, the reward function in the original GRMDP
would correspond to the step cost function, which applies to
all options, and reward Ro is the only goal-specific reward.
These subgoal RMDPs are solved by the RL agents at lower
level in an abstract state space.

B. Abstraction Reasoner

State abstraction defines a smaller set of states for the MDP
state space, enabling efficient learning by an RL agent. The
abstraction reasoner takes domain knowledge and constructs
the state abstraction. In the taxi domain example, to drop a
passenger that is already in the taxi, the location of the other
passenger and their destinations are irrelevant. The reasoner
component precisely identifies such irrelevant features given
the domain knowledge and infers a state abstraction.

Dietterich [29] defines irrelevant state variables for an MDP
as variables that never influence the reward function or the
relevant state variables. Formally,

Definition 3: State variables Y are irrelevant in an MDP,
if state variables can be partitioned into two disjoint subsets
X and Y such that

1) P (x′, y′|x, y, a) = P (x′|x, a)P (y′|x, y, a)
2) R(s, a, s′) = R(〈x, y〉, a, 〈x′, y′〉) = R(x, a, x′)

Given a Dynamic Bayesian Network (DBN) representa-
tion [30] of the transition function of an MDP, the set of
relevant variables can be identified by starting at the reward
variable and collecting all the variables that influence the
collected variables. This set of relevant variables form a
“model-agnostic state abstraction”. Such abstractions ensure
that the reward distribution and the transition dynamics in the
abstract MDP and the original MDP are same. Hence, model-
agnostic abstraction is safe.

The transition function of a GRMDP is first-order/relational
and hence a simple DBN does not suffice. Previous work
have used a 2-timeslice Probabilistic Relational Model (PRM)
[31] to capture the transition function in relational MDP.
However, PRMs are not suitable for capturing GRMDPs.
Hence, RePReL framework uses an extension of the First-
Order Conditional Influence (FOCI) language [32] called
Dynamic FOCI (D-FOCI).

D-FOCI language consist of statements of the form,

<option> : <influents>
+1−→ <resultant> (1)

where influents is a finite set of literals, resultant
is a single literal, and the option is a temporally extended
operator from the symbolic planner. Additionally, action vari-
ables are allowed in influents and reward variables are
allowed in resultant. A D-FOCI statement states that when
executing the given option, the resultant literal in time-
step t+1 is influenced by literals in influents in time-step
t. D-FOCI encodes the context-specific influence information
where the context is the option being executed. The +1
on top of the arrow indicates the influence on the next time-
step, for same time-step influence the +1 can be skipped. To
encode perpetual influence between literals, <option> in the
D-FOCI statement can be omitted.

A task-specific model-agnostic abstraction is derived for
each option by regressing through the set of applicable D-
FOCI statements and collecting the relevant literals that influ-
ence the relevant literals, starting with the literals that influence
the reward variables. A D-FOCI statement is applicable for a

given option o if the <option> in the D-FOCI statement
matches o or the <option> is empty. Inspired by the work
of Manhaeve et al. [33], we extend the first-order language
used by D-FOCI to include latent predicates for hybrid, and
heterogeneous domains. Latent predicate literals are allowed
in the influents as well as the resultant.

For example, in the hybrid taxi domain, the location of
the taxi is available from the image so a latent predicate is
introduced to represent the taxi location—Img:taxi_at.
The passenger location and destination are available as state
predicates, so they are represented using the standard first-
order logic notation. The location of the taxi is influenced
by its previous location and the action performed, which is
captured in the D-FOCI statement in Equation 2a. Further,
when executing the task of picking up a passenger, if one
assumes that the taxi is empty, then it can be safely inferred
that the passenger’s location, the passenger in the taxi, and
the taxi’s location are the only influents for the task. This
influence is captured in Equations 2b and 2c. Similarly, the
influence information while dropping passenger P is captured
in Equation 2d–2f.

{action,Img:taxi_at(X)}
+1−→ Img:taxi_at(X) (2a)

pick(P) : {action,in_taxi(P),at(P, Y),

Img:taxi_at(X)} +1−→ in_taxi(P) (2b)
pick(P) : {in_taxi(P)}−→Reward (2c)
drop(P) : {at_dest(P)}−→Reward (2d)
drop(P) : {at(P,X),dest(P,D),at_dest(P)}

−→at_dest(P) (2e)
drop(P) : {action,Img:taxi_at(X),at(P, Y),

in_taxi(P)} +1−→ at(P,K) (2f)

The process of identifying the abstract state representations
from the D-FOCI statements with latent predicates remains
the same. Hence, the extracted abstract state might have the
latent predicates.

C. Input Pre-processor
While the structured part of the state observation is pro-

cessed by the abstraction reasoner, the unstructured part of
the state space is passed through the input pre-processing
module. This module processes the unstructured part of the
state observation and provides latent state embeddings to
the merge module. The input pre-processing module can
be a Convolutional Neural Network (CNN) for image data,
a transformer for text data or a combination of both (we
employ CNNs in our experiments). The neural network of the
input pre-processor can be chosen based on the type of the
unstructured data.

D. Merge module
The relevant state variables obtained from the abstraction

reasoner and the latent predicates obtained from the input pre-

processor serve as inputs to the merge module. The relevant
state predicates from the abstraction reasoner would include
the latent predicates. The merge module would replace the
latent predicates with the respective latent embedding using
the D-FOCI statements. The derived abstract state then serves
as the input to the RL agent.

E. RL agent

To allow for heterogeneous data, we replace the tabular
RL agents in the RePReL framework by the DRL agents. To
this effect, we modify the RePReL learning algorithm from
Kokel et al. [17] to batch setting. That is, the 〈s, a, r, s′〉 (state,
action, reward, next-state) tuples are stored in buffers during
exploration. Then after fixed number of exploration steps, the
RL agents and the input pre-processing module are trained on
a batch sampled from the buffer.

In summary, the key extensions to the original RePReL
work includes the use of multi-modal information, an addi-
tional merge module along with the extended reasoner module
to generate latent features, the use of Deep RL in the lowest
level, and updating the learning to be performed in the batch
mode. Given, these extensions, we now present our empirical
evaluations.

IV. EXPERIMENTS

We evaluation HDRePReL in two domains, Taxi and Craft
World. We design our experiments to explicitly answer the
following questions.

Q1: Sample Efficiency: Do the abstractions induced in
HDRePReL improve sample efficiency?

Q2: Generalization: Does HDRePReL efficiently generalize
to varying number of objects?

Domains: The first domain that we consider is the hybrid
taxi domain. This is an 8× 8 grid, shown in Figure 2a, with
one taxi and 4 special locations: 〈R,G,B, Y 〉. There can be
more than one passenger at a time in the grid; but the taxi
can be hired only by a single passenger. In every episode, the
pickup and drop location of each passenger are sampled from
the 4 special locations. The agent can perform 6 actions: up,
down, right, left, pick, drop. The taxi location and the grid is

🌳

🪨

🍞 🪓

🪵

🌾

🏠 🔨 🤖

Fig. 4: Craftworld domain.

provided as a gray scale image and the passenger information
is provided as vector. The environment provides a reward
of −0.1 for every step and −1 for pick or drop action in
wrong locations. We consider the following three tasks in this
domain: task 1, drop a passenger to their destination; task 2,
drop two passengers to the respective destinations; and task 3,
drop three passengers to their destination. The set of D-FOCI
statements used in this domain are presented in Equation 2.

The second domain is a Minecraft-inspired grid-world do-
main called Craftworld [34]. This environment contains a
10x10 grid, as shown in Figure 4. This domain has 7 different
object, some of which are holdable. The six actions available
in this domain are the same as that of the hybrid Taxi domain.
In this domain, the agent’s location and the map is available as
unstructured data–as image, whereas all the objects’ location
are available as state predicates. We consider three tasks in
this domain: Task 1, make bread by bringing an axe to the
wheat’s location; Task 2, build a house by bringing a hammer
to the wood’s location; Task 3, break a rock by bringing a
hammer to the rock’s location. The set of D-FOCI statements
used in this domain are presented in Equation 3.

Baselines: We evaluate our HDRePReL agent against a
double Deep Q-Network (DQN) [35], a state-of-the-art DRL
method. The DQN agent learns a single end-to-end policy
for completing the task. The network architecture of the
DQN agent includes a CNN module—equivalent to the input
pre-processor. The CNN module receives the unstructured
part of the state observation. Then, the output of the CNN
module is concatenated with the structured part of the state
representation and passed through a multi-layered perceptron.
The network parameters are summarized in the Table I. For
honest comparison, we employed the same network parameters
in HDRePReL and DQN. All of our code is available online1.

Sample Efficiency: To evaluate the efficiency of the
HDRePReL architecture, we compare it against the DQN
agent. We compare the learning curves of these two agents
on three tasks of the hybrid taxi domain in Figure 5 and
on the three tasks of the craftworld in Figure 6. Ignore the
dashed lines with ‘+T’ for now. While both the HDRePReL
and the DQN agent achieves the optimal reward after 200K
steps in Taxi task 1; their performance significantly differs in
the five remaining tasks. In these tasks, it can be clearly seen
that the efficiency of HDRePReL is significantly better than
the baseline thus demonstrating that the abstractions defined
by the reasoner enables efficient learning. Hence, we answer
Q1 affirmatively in that HDRePReL significantly improves the
sample efficiency when compared to an end-to-end RL agent
that does not use any domain-specific knowledge.

Generalization: We evaluate generalization capability of
the HDRePReL agent in the hybrid taxi domain. We transfer
the HDRePReL and the DQN agent trained on task 1 and
train them on task 2. Subsequently, we transfer the agents
from task 2 to task 3. Figures 5b and 5c present the learning
curves of these transferred agents indicated by ‘+T’. While

1https://starling.utdallas.edu/papers/HybridDeepRePReL

(a) Task 1 (b) Task 2 (c) Task 3

Fig. 5: Comparing learning curves of hybrid deep RePReL with DQN in Hybrid Taxi World. (a)Task 1 is to drop passenger
p1,(b) Task 2 is to drop p1 and p2, (c)Task 3 is to drop p1, p2, p3.

(a) Task 1 (b) Task 2 (c) Task 3

Fig. 6: Comparing learning curves of HDRePReL with DQN in Craft World. (a) task 1 is to make bread; (b) task 2 is to build
house; (c) task 3 is to break rock.

both the transferred agents have steeper learning curves than
their respective base models, the transferred RePReL agent
converges significantly faster than the transferred DQN agent.
In many of the tasks, this is achieved with no learning in
the new domain. This is due to the inherent generalization
capabilities of the HDRePReL agent. These transfer results
in hybrid taxi domain allows us to answer Q2 affirmatively
in that HDRePReL allows for successful generalization across
varying number of objects and is best suited for relational
domains.

Summary: To summarize, the experiments conclusively
demonstrates the most important observation about the
HDRePReL agent – that it leverages the generalization power
of the symbolic planner with the efficient learning ability
of the underlying DRL agent. The resulting combination
is a powerful neurosymbolic system that not only learns
efficiently but generalizes to a larger number of objects by
bootstrapping on its prior learned policies. The generalization
ability is particularly important when learning occurs with
different starting states, differing number of objects, different
domain configurations or different target states. In real world,
assuming that the data arrives only from a single source
can lead to disastrous results. Hence, using architectures that
support heterogeneous data that have the ability to generalize
to different numbers of objects is crucial for a system to be

deployed in real-time. HDRePReL takes a first step towards
this direction.

V. CONCLUSION

The paper presented a novel neurosymbolic system that is
capable of learning in the presence of heterogeneous (discrete
and continuous), hybrid (structured and unstructured) and
relational (objects and relations) data. Specifically, the paper
introduced HDRePReL; an architecture that combines the
advantage of a deliberate relational planner with a fast DRL
agent. The resulting combination demonstrated both effective
learning and efficient generalization across differing numbers
of objects. More rigorous evaluation of the system on larger
problems is an immediate future direction. Allowing for the
DRL agent to communicate back to the planner in order to
refine the planner based on new and interesting observation is
a high-impact direction that could allow for a fully differen-
tiable end-to-end system. Finally, given the use of a symbolic
planner, the resulting decompositions and abstractions are
explainable. Thus allowing for richer human interaction with
the given system remains an interesting direction for future
research.

{action, Img:agent_at(X),holdable(Y),

holding(Y)} +1−→ Img:agent_at(X)

{holdable(Y), holding(Y),at(Y, L)}
+1−→ holding(Y)

{at(rock,L1), at(tree,L2)} (3)
+1−→ Img:agent_at(X)

{at(tree,L), Img:agent_at(L),holding(hammer)}
−→at(tree,L),at(wood, L)

{at(wheat,L), Img:agent_at(L),holding(axe)}
−→at(wheat,L),at(bread, L)

{at(wood, L), Img:agent_at(L),holding(hammer)}
−→at(wood, L),at(house, L)

{at(rock,L), Img:agent_at(L),holding(hammer)}
−→at(rock,L)

pick(P) : holding(P)−→Ro

go_to(P) : {at(P,L),Img:agent_at(L)}−→Ro

Hyperparameters Values

Learning rate 0.003
Batch size 128
Max steps 1e6
Max buffer size 1e5
Discount rate 0.99
Intrinsic reward on subgoals 30
Number of CNN Layers 2
CNN Kernel Size 4
CNN Stride 1
CNN Activation Function relu
Epsilon decay True
Output Size (# of Actions) 6
RL Hidden layers 2
RL Hidden units 256

Craftworld

Image size 10x10x1
Structured Input Size 48
Max episode length 500

Hybrid Taxi Domain

Image Size 8x8x1
Structured Input Size 27
Max episode length (Task 1) 500
Max episode length (Task 2) 1000
Max episode length (Task 3) 1000

TABLE I: Summary of the network hyperparameters

ACKNOWLEDGMENT

HK, NP, and SN gratefully acknowledge the support of ARO
award W911NF2010224 and AFOSR award FA9550-18-1-
0462. PT acknowledges support of DARPA contract N66001-
17-2-4030 and NSF & USDA-NIFA under grant 2021-67021-
35344. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily

representing the official policies or endorsements, either ex-
pressed or implied, of the AFOSR, ARO, NSF, DARPA or
the U.S. government.

REFERENCES

[1] E. Blasch, É. Bossé, and D. A. Lambert, High-Level Information Fusion
Management and System Design. Artech House, Norwood, MA, 2012.

[2] E. Blasch and A. Aved, “URREF for veracity assessment in query-based
information fusion systems,” in FUSION, 2015, pp. 58–65.

[3] P. Costa, A.-L. Jousselme et al., “URREF: Uncertainty representation
and reasoning evaluation framework for information fusion,” Journal of
Advances in Information Fusion, vol. 13, no. 2, pp. 137–157, Dec. 2018.

[4] M. R. Vilamala, L. Hiley et al., “A pilot study on detecting violence in
videos fusing proxy models,” in FUSION, 2019, pp. 1–8.

[5] M. R. Vilamala, H. Taylor et al., “A hybrid neuro-symbolic approach
for complex event processing,” CoRR, vol. abs/2009.03420, 2020.

[6] E. P. Blasch and D. Braines, “Scalable information fusion trust,” in
FUSION, 2021, pp. 1–8.

[7] R. Cruise, E. Blasch, S. Natarajan, and A. Raz, “Cyber-physical com-
mand guided swarm,” in DSIAC, vol. 5, no. 2, 2018, pp. 24–30.

[8] G. Pavlin, J. P. de Villiers, J. Ziegler et al., “Relations between explain-
ability, evaluation and trust in ai-based information fusion systems,” in
FUSION, 2021, pp. 1–9.

[9] D. Braines, A. Preece, C. Roberts, and E. Blasch, “Supporting agile user
fusion analytics through human-agent knowledge fusion,” in FUSION,
2021, pp. 1–8.

[10] G. Booch, F. Fabiano et al., “Thinking fast and slow in AI,” in AAAI,
2021, pp. 15 042–15 046.

[11] M. Nilsson and T. Ziemke, “Information fusion: a decision support
perspective,” in FUSION, 2007, pp. 1–8.

[12] G. Anderson, A. Verma, I. Dillig, and S. Chaudhuri, “Neurosymbolic
reinforcement learning with formally verified exploration,” in NeurIPS,
vol. 33, 2020, pp. 6172–6183.

[13] L. Mitchener, D. Tuckey, M. Crosby, and A. Russo, “Detect, understand,
act: A neuro-symbolic hierarchical reinforcement learning framework,”
in IJCLR, 2021.

[14] D. Silver, A. Huang et al., “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,
2016.

[15] D. Silver, J. Schrittwieser et al., “Mastering the game of go without
human knowledge,” Nat., vol. 550, no. 7676, pp. 354–359, 2017.

[16] D. Silver, T. Hubert et al., “A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play,” Science, vol. 362,
no. 6419, pp. 1140–1144, 2018.

[17] H. Kokel, A. Manoharan, S. Natarajan, R. Balaraman, and P. Tadepalli,
“RePReL: Integrating relational planning and reinforcement learning for
effective abstraction,” ICAPS, vol. 31, no. 1, pp. 533–541, May 2021.

[18] H. Kokel, A. Manoharan, S. Natarajan, B. Ravindran, and P. Tadepalli,
“Dynamic probabilistic logic models for effective abstractions in RL,”
CoRR, vol. abs/2110.08318, 2021.

[19] S. Sanner and K. Kersting, “Symbolic dynamic programming for first-
order pomdps,” in AAAI, 2010.

[20] C. Wang, S. Joshi, and R. Khardon, “First order decision diagrams for
relational mdps,” JAIR, vol. 31, pp. 431–472, 2008.

[21] S. Das, S. Natarajan, K. Roy, R. Parr, and K. Kersting, “Fitted q-learning
for relational domains,” CoRR, vol. abs/2006.05595, 2020.

[22] M. Grounds and D. Kudenko, “Combining reinforcement learning with
symbolic planning,” in AAMAS III, vol. 4865, 2005, pp. 75–86.

[23] F. Yang, D. Lyu, B. Liu, and S. Gustafson, “Peorl: Integrating symbolic
planning and hierarchical reinforcement learning for robust decision-
making,” IJCAI, pp. 4860–4866, 2018.

[24] D. Lyu, F. Yang, B. Liu, and S. Gustafson, “SDRL: Interpretable and
data-efficient deep reinforcement learning leveraging symbolic plan-
ning,” in AAAI, 2019, pp. 2970–2977.

[25] Y. Jiang, F. Yang, S. Zhang, and P. Stone, “Task-motion planning with
reinforcement learning for adaptable mobile service robots,” in IROS,
2019, pp. 7529–7534.

[26] M. Eppe, P. D. H. Nguyen, and S. Wermter, “From semantics to
execution: Integrating action planning with reinforcement learning for
robotic causal problem-solving,” Frontiers in Robotics and AI, vol. 6, p.
123, 2019.

[27] C. Gehring, M. Asai, R. Chitnis, T. Silver, L. P. Kaelbling, S. Sohrabi,
and M. Katz, “Reinforcement learning for classical planning: Viewing
heuristics as dense reward generators,” ICAPS, 2022.

[28] L. Illanes, X. Yan, R. T. Icarte, and S. A. McIlraith, “Symbolic plans as
high-level instructions for reinforcement learning,” ICAPS, pp. 540–550,
2020.

[29] T. G. Dietterich, “An overview of hierarchical reinforcement learning,”
in International Symposium on Abstraction, Reformulation, and Approx-
imation. Springer, 2000.

[30] K. P. Murphy, “Dynamic bayesian networks: Representation, inference
and learning,” Ph.D. dissertation, 2002.

[31] C. Guestrin, D. Koller et al., “Generalizing plans to new environments
in relational mdps,” in IJCAI, 2003, pp. 1003–1010.

[32] S. Natarajan, P. Tadepalli et al., “Learning first-order probabilistic
models with combining rules,” Ann. Math. Artif. Intell., vol. 54, no.
1-3, pp. 223–256, 2008.

[33] R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, and L. De Raedt,
“Deepproblog: Neural probabilistic logic programming,” in NeurIPS,
vol. 31, 2018.

[34] C. Devin, D. Geng, P. Abbeel, T. Darrell, and S. Levine, “Compositional
plan vectors,” NeurIPS, vol. 32, 2019.

[35] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in AAAI, 2016, pp. 2094–2100.

