
Springer Nature 2021 LATEX template

RePReL: A Unified Framework for Integrating

Relational Planning and Reinforcement Learning for

Effective Abstraction in Discrete and Continuous Domains

Harsha Kokel1*, Sriraam Natarajan1, Balaraman Ravindran2 and Prasad Tadepalli3

1The University of Texas at Dallas, USA.
2Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of

Technology Madras, India.
3 Oregon State University, USA.

*Corresponding author(s). E-mail(s): hkokel@utdallas.edu;
Contributing authors: Sriraam.Natarajan@utdallas.edu; ravi@cse.iitm.ac.in;

tadepall@eecs.oregonstate.edu;

Acknowledgments

This preprint has not undergone peer review or any post-submission improvements or cor-
rections. The Version of Record of this article is published in Neural Computing &
Applications (2022), and is available online at https://doi.org/10.1007/s00521-022-08119-y

Abstract

We propose a hybrid planner-(deep)reinforcement learning (RL) architecture, RePReL, that lever-
ages a relational planner to efficiently provide useful state abstractions. State abstractions have a
tremendous advantage for better generalization and transfer in RL. Our framework takes an impor-
tant step toward constructing these abstractions. Specifically, the framework enables multi-level
abstractions by leveraging a high-level planner to communicate with a low-level (deep) reinforce-
ment learner. Our empirical results demonstrate the generalization and transfer capabilities of
the framework in both discrete and continuous domains with rich structures (objects and rela-
tions between these objects). A key aspect of RePReL is that it can be seen as a plug-and-play
framework where different planners can be used in combination with different (deep) RL agents.

Keywords: Planning, Reinforcement Learning, Abstractions

1 Introduction

Planning and Reinforcement Learning (RL) have
been two major thrusts of AI aimed at sequential
decision-making. While classical relational plan-
ning focuses on composing sequences of actions

offline before any execution, RL interleaves plan-
ning and execution and is typically associated
with reactive domains with unknown dynamics.
We describe an integrated architecture that we
call “RePReL,” which combines relational plan-
ning (ReP) and reinforcement learning (ReL) in

1

https://doi.org/10.1007/s00521-022-08119-y

Springer Nature 2021 LATEX template

2 RePReL

a way exploiting their complementary strengths,
accelerating the convergence compared to a tradi-
tional RL solution, and enabling effective transfer
over multiple tasks.

Most prior work in combining planning and RL
falls under the general paradigm of “model-based
reinforcement learning” (MBRL). Here explicit
dynamic models of actions are learned via explo-
ration and used either offline to compute approx-
imately optimal policies [4, 16] or online in look-
ahead search [43]. The main motivation for the
combination comes from the benefits of efficiency
and cost savings due to offline computation or
look-ahead search. Critically, both planning and
RL components employ the same state space.

However, in many real-world domains, e.g.,
driving, the state space of offline planning is rather
different from the state space of online execution.
Planning typically occurs at the level of deciding
the route, while online execution needs to take
into account dynamic conditions such as locations
of other cars and traffic lights. Indeed, the agent
typically does not have access to the dynamic
part of the state at the planning time, e.g., future
locations of other cars, nor does it have the com-
putational resources to plan an optimal policy in
advance that works for all possible traffic events.

The key principle enabling agents to deal with
these informational and computational challenges
is abstraction. In the driving example, the high-
level state space consists of coarse locations such
as “O’Hare airport” and high-level actions such as
taking “Exit 205,” while the low-level state space
consists of a more precise location and velocity of
the car and actions such as turning the steering
wheel or braking. Importantly, excepting occa-
sional unforeseen failures, the two levels operate
independently of each other and depend on dif-
ferent kinds of information available at different
times. This allows the agent to tractably plan at a
high level without needing to know the exact state
at the time of the execution, and behave appro-
priately during plan execution by only paying
attention to a small dynamic part of the state.

In this work, we aim to combine planning and
RL with the motivation of exploiting the hierarchy
in the domain and inducing effective task-specific
abstractions for efficient learning. An important
assumption that we make is the availabil-
ity of a relational planner designed by a

human expert. If the planner is a hierarchi-
cal one, the human expert is used to construct
the task-subtask hierarchy, otherwise the human
expert’s guidance is used to define the sequence
of high-level tasks for solving the problem. In
addition, as we explain later, knowledge from
humans is employed to provide safe and effective
abstractions.

Our key contribution is the RePReL archi-
tecture that enables multi-level abstractions. The
second contribution is the adaptation of first-
order conditional influence (FOCI) statements [35,
36] to determine safe and effective abstractions.
Finally, we demonstrate the effective transfer of
learned skills from one task to another.

This work builds on our prior work [27] and
extends it significantly in a few different direc-
tions. First, the prior work only handled tabular
Q-learning in discrete domains. We have extended
the formalism and presented results on using neu-
ral RL to handle both discrete and continuous
states and actions. To this effect, we employ Dou-
ble Deep Q-Network [19] and Soft-Actor Critic
(SAC) [18] as base learners. Another key dif-
ference is that while our earlier work generated
the ground state abstractions by unrolling the D-
FOCI to a fixed depth (which limits its use), we
allow for richer recursion and relational state rep-
resentations by employing graph neural networks.
The final difference is that while the prior work
can handle only online RL updates, our current
approach allows for both online and batch RL
updates.

The rest of the paper is organized as follows.
Section 2 summarizes the required background
and the relevant related work in planning and
RL. Section 3 describes the RePReL architecture
in detail. Section 4 describes empirical evalua-
tions on four different domains that demonstrate
generalization and transfer across multiple tasks.
Finally, Section 5 concludes and discusses future
directions.

2 Background and Related
Work

This section introduces some basic first-order logic
formalisms and notations. Then it briefly covers
the required background in the areas of RL and
planning, including hierarchical approaches. Then

Springer Nature 2021 LATEX template

RePReL 3

it presents a brief summary of the related work at
the intersection of RL and planning.

2.1 First-order Logic

A first-order language L consists of a finite set
of constants, predicates, and free variables. Each
predicate takes a fixed number of arguments—
arity α—and is represented as predicate/α.
Following Prolog notation, we represent free vari-
ables in uppercase and constants in lowercase.
A substitution θ maps variables to constants.
An atom is a predicate symbol followed by a
parenthesized list of terms, predicate(term1,

term2, · · ·). A literal is an atom or negation of
an atom. If all the terms in an atom are con-
stants it is called a grounded atom, otherwise,
it is called a lifted atom. A lifted atom can be
grounded by substitution. For example, substitu-
tion θ = {X/p1} grounds atom a =taxi at(X) to
aθ =taxi at(p1)

2.2 Reinforcement Learning

A Markov decision process (MDP) is defined as a
tuple 〈S,A, T,R, γ〉, with a set of states S, a set of
actions A, a transition function T : S × A× S →
[0, 1], a reward function R : S × A × S → R, and
a discount factor γ. The goal of an agent is to
interact with the environment and find an optimal
policy π : S×A→ [0, 1] maximizing the expected
cumulative discounted reward.

While RL is generally successful, it suffers from
a curse of dimensionality especially when state fea-
tures are very large. Hierarchical RL addresses it
by introducing temporal abstractions. HRL meth-
ods allow for improved exploration in problems
with rich structure, are efficient in learning due to
their ability to decompose larger tasks into smaller
sub-tasks, and are amenable to transfer and gen-
eralization [6]. While MDPs conceive time as a
discrete step, where a chosen action only persists
for a single step, Semi-MDPs (SMDPs) [38, 45]
introduce temporal abstractions, where a chosen
action persists over a variable period of time. The
options framework [44] is one such hierarchical
RL approach that models temporally extended
actions as options. An option p = 〈Ip, πp, βp〉 con-
sists of three components: a set of states where
the option can be initiated Ip, an option policy πp,
and a termination condition βp : S → [0, 1] that
describes the probability of option termination.

For relational domains, the MDP definition has
been extended to the relational MDP [12]. We
focus on the relational MDPs, but before introduc-
ing them we must make a distinction between the
state predicates and the action predicates. State
predicates indicate properties or relations between
the entities of the world, whereas action predi-
cates indicate an activity, movement, or step. For
example, in the taxi domain predicate east/0 is
an action predicate and the atom east() moves
the taxi in the east direction. For simplicity, we
assume the action predicates have zero arity.

Definition 1 Given a first-order language L consist-
ing of a set of constants C, a set of state predicates P ,
and a set of action predicates Y , a relational MDP
(RMDP) is defined as a tuple 〈S,A, T,R, γ〉, where:

• S is a finite set of states defined over all the
ground atoms generated by constants C and
state predicates P

• A is a finite set of actions defined as a set
of ground atoms generated by constants C and
action predicates Y

• T : S×A×S → [0, 1] is a probabilistic transition
function

• R : S ×A× S → R is a reward function

• γ ∈ [0, 1) is the discount factor

2.3 Planning

A schematic operator in classical planning [13] is
defined as c = 〈h(c), pre(c), eff +(c), eff −(c)〉, con-
sisting of a lifted atom, h(c), often referred to as
the head ; a first-order formula called preconditions
pre(c); and two disjoint sets of atoms, eff +(c) and
eff −(c), describing the positive (add) and nega-
tive (delete) effects of executing the operator. All
terms that appear in the literals in pre, eff +, and
eff − also appear as arguments of h(c). Hence, a
schematic operator can be grounded by substitut-
ing the head atom, h(c)θ. A ground operator cθ
can be applied in a state s if a substitution θ sat-
isfies the precondition pre(c) at s, i.e. s |= pre(c)θ.
On applying the ground operator cθ, s transitions
to another state s′ = (s \ eff −(c)θ) ∪ eff +(c)θ.

A planning domain D = 〈L,O〉 consists of a
first-order language L and a finite set of schematic
operators O. A classical planning task is defined
as a tuple Π = 〈D, s0, g〉, where s0 is an initial
state and g is a goal specified as a conjunction of

Springer Nature 2021 LATEX template

4 RePReL

literals. A plan for the planning task is a sequence
of ground operators, which when executed in a
state s results in a state satisfying g.

A hierarchical planning domain D =
〈L,O,M〉 is similar to a classical planning domain
with an additional set of methods M. A method
is a triple m = 〈t(m), pre(m), τ(m)〉, where t
is a compound-task, pre is a precondition for
the method, and τ is an ordered sequence of
compound-tasks or operators. A task t(m) can
be decomposed into a sequence of sub-tasks τ(m)
at a state s if a substitution θ satisfies the pre-
conditions in s, i.e. s |= pre(m)θ. A hierarchical
planner solves the planning task by recursively
decomposing the goal into a sequence of sub-tasks.

2.4 Related Work

Prior research has explored the idea of combin-
ing AI planning and RL agents to solve complex
problems involving temporally extended actions or
task hierarchies [10, 15, 23, 33, 47]. Among these,
our RePReL is closely related to the Taskable RL
framework of Illanes et al [21]. Similar to Taskable
RL, RePReL employs a planner to generate useful
instructions (temporally extended operators) for
the RL agent. RePReL extends the Taskable RL
framework in three key ways: (1) it generalizes the
Taskable RL to solving RMDP, (2) it provides an
approach to define task-specific state abstraction
in this framework, and (3) it can handle both dis-
crete and continuous domains. Thus, Taskable RL
is a natural baseline in our evaluations.

RMDPs can either be converted to propo-
sitional MDPs and solved using standard RL
approaches, or they can be solved using rela-
tional RL (RRL) approaches. RRL approaches
include symbolic as well as neural approaches.
Notable work using symbolic Relational RL
(RRL) methods include relational TILDE trees
with Q-learning [9], RRL-TG that replaces TILDE
with incremental tree learning algorithm [8],
approximate policy iteration (API) with decision-
lists [12], relational gradient-boosted Q-learning
(GBQL) and relational boosted fitted Q-learning
(RBFQ) [5]. Neural RRL approaches include neu-
ral logic machines (NLM) [7] that showed the
ability to solve blocks world with up to 50 blocks,
neural logic reinforcement learner (NLRL) [24],
off-policy differentiable logic RL (OPDLRL) [49]
that uses differentiable ILP (∂ILP) [11], the work

by Kimura et al [26] that used Logical Neural Net-
work (LNN) [42] for text-based RL games, and
various deep relational RL works that use graph-
based neural networks (GNNs) architectures with
off-policy learning algorithms [22, 31, 48]. In our
experiments, we used a symbolic RRL, a proposi-
tional deep RL as well as a GNN-based relational
deep RL agent for evaluations.

3 Integration of relational
planning and reinforcement
learning

This section explains the problem setup and
presents the RePReL architecture.

3.1 Problem Setup

To address a multi-task setting, we first restrict
the RMDP definition to a goal-directed RMDP
(GRMDP), M = 〈S,A, T,R, γ,G〉, by introduc-
ing a set of goals G that the agent may be asked
to achieve. Different tasks are formulated in a
GRMDP by choosing different goals from the set
G. The reward function in this multi-task setting
is incognizant of the goal. It provides a domain-
specific reward, like a negative reward for invalid
actions or step costs. The solution to a GRMDP is
a policy π : S×G×A→ [0, 1], such that when fol-
lowing π from any state s for goal g the probability
of eventually reaching the goal is 1.

We assume that partial high-level domain
knowledge of the problem is specified in the form
of a high-level planner. We now briefly explain the
notion of high-level planning. Unlike the classical
planning domains D = 〈L,O〉 where a schematic
operator is a single action, in the high-level plan-
ning domain D = 〈L,O〉 schematic operators are
temporally extended. This is to say that, in clas-
sical planning, applying a grounded operator to
state results in a single step or transition from one
state to another. In high-level planning, applying a
grounded operator to a state usually requires mul-
tiple steps or multiple subsequent state transitions
before it terminates. The termination condition β
is also defined for each schematic operator. Given
the resemblance to the options framework [44], we
refer to these temporally extended operators as
options. A high-level plan consists of a sequence
of grounded options.

Springer Nature 2021 LATEX template

RePReL 5

Fig. 1: RePReL architecture.

We address a class of GRMDPs that combines
a high-level symbolic planner with low-level RL
policies. Inspired by an earlier work [21], we define
this class of GRMDPs as taskable GRMDPs.

Definition 2 A GRMDP 〈S,A, T,R, γ,G〉 is task-
able if a high-level planning domain D can be defined
such that all the goals in G can be composed as some
combination of the options in D.

The key idea here is that high-level symbolic
domain knowledge can be leveraged to identify
the compositionality in the domain and individual
policies can be learned to solve each composi-
tion. So a solution to a taskable GRMDP is a
compositional policy.

3.2 RePReL

Given a taskable GRMDP problem, the RePReL
framework obtains the high-level plan from a sym-
bolic planner and then learns RL policies at the
low level to achieve each of the options in the
high-level plan. The architecture of the RePReL
framework is shown in Figure 1. It consists of
three stacked modules: symbolic planner, state
abstractor, and reinforcement learners.

The symbolic planner uses the high-level plan-
ning domain D to decompose the goal into
a sequence (or set, if unordered) of grounded
options. It must be mentioned that our RePReL
framework is independent of the planner. If
the planner is a hierarchical one, we assume that
high-level tasks (methods) are decomposed recur-
sively until low-level options are constructed. If

the planner is a non-hierarchical one, the high-
level decomposition yields a set of options. The
state abstractor generates a task-specific abstract
state representation. Finally, multiple reinforce-
ment learners at the lowest level learn separate RL
policies for each option in the abstract state space.
For each option o ∈ O in the high-level planning
domain, we define a subgoal RMDP as follows.

Definition 3 The subgoal RMDP Mo for an option o
is a tuple 〈S,A, Po, Ro, γ〉 consisting of abstract states
S, actions A, transition function Po, reward function
Ro, discount factor γ. The action space remains the
same as for the original GRMDP. The reward function
Ro and transition probability distribution function Po
are defined as follows:

Ro(s, a, s
′) =

tR +R(s, a, s′) if s′ ∈ β(o) & s /∈ β(o)
0 if s′ ∈ β(o) & s ∈ β(o)
R(s, a, s′) otherwise

Po(s, a, s
′) =

0 if s ∈ β(o) & s′ /∈ β(o)
1 if s ∈ β(o) & s′ ∈ β(o)
P
(
s, a, s′

)
otherwise

with R and P from the original GRMDP, and a fixed
terminal reward tR.

This subgoal RMDP is solved by the low-level
RL agents in abstract state space. We next describe
how the state space is abstracted safely by the state
abstractor.

3.2.1 State Abstractor

The state abstractor determines the set of state
variables that are necessary and sufficient given
the current task and provides a task-specific
abstract representation of the state for the low-
level RL agents. We adopt the bisimulation frame-
work of Givan et al [14] and Ravindran and Barto
[40] to define model agnostic abstraction.

Definition 4 A model-agnostic abstraction φ(s)
is such that for any action a and an abstract state s,
φ(s1) = φ(s2) if and only if∑
{s′1|φ(s′1)=s}

Ro(s1, a, s
′
1) =

∑
{s′2|φ(s′2)=s}

Ro(s2, a, s
′
2)

∑
{s′1|φ(s′1)=s}

Po(s1, a, s
′
1) =

∑
{s′2|φ(s′2)=s}

Po(s2, a, s
′
2)

The first condition states that the two states
s1 and s2 have the same immediate reward dis-
tribution with respect to the abstraction, and the

Springer Nature 2021 LATEX template

6 RePReL

second condition states that they have the same
transition dynamics. Essentially, the value func-
tion of the original MDP is maintained in the
abstract MDP. So, the model agnostic abstraction
is safe. That is, an optimal policy learned with
model-agnostic abstraction is also optimal in the
original MDP [30].

To define such a safe model agnostic abstrac-
tion function φ, we need to identify state literals
that neither influence the reward function nor
the transition function—they are irrelevant. In
this framework, we capitalize on explicit domain
knowledge to identify the relevant state literals
from irrelevant ones. This domain knowledge is
captured using a formal language called D-FOCI.

D-FOCIs

First-order conditional influence statements
(FOCI), introduced by Natarajan et al [35]
consist of statements of the form,

IF <condition>

THEN <influent> QINF <resultant>,
(1)

where condition and influent are a finite set
of literals and resultant is a single literal.
It encodes the qualitative influence (QINF) of
influent on the resultant.

Dynamic-FOCI (D-FOCI) statements extend
FOCI statements by adding representation to cap-
ture influence over time. The syntax of a D-FOCI
statement is as follows,

[<option>] : <influent>
[+1]−→ <resultant>,

(2)
where the option is a temporally extended oper-
ator from the high-level planning domain, and
influent and resultant are set of literals.

D-FOCI statement states that when execut-
ing the given option, the resultant literal is
influenced by literals in influent. Following the
standard dynamic Bayesian network (DBN) repre-
sentation of an MDP, we allow action variables in
influent and reward variables in resultant. D-
FOCIs denote direct influences between literals in
the same time step by an arrow symbol (−→) and
direct influences of the literals in the current time
step on the literals in the next time step by a ‘+1’
symbol above the arrow. Non-mandatory compo-
nents of the D-FOCI statement are denoted within

Fig. 2: Taxi domain with multiple passengers and
a single taxi.

square brackets []. Omitting the option encodes
the influences between literals is perpetual (for
example, Equation 3a encodes that the action

and taxi at always influence taxi at, regardless
of the option).

D-FOCI statements are a class of dynamic
relational models [17, 34, 46]. Similar to dynamic
relational models, D-FOCIs captures the condi-
tional independence relationships between domain
predicates at different time steps [28] and has the
additional capability of conditioning on the option
being executed.
Example of D-FOCI: Consider a relational taxi
domain shown in Figure 2. This domain has one
or more passengers and a taxi. Six actions avail-
able in this domain are: east, west, north, south,
pick, drop. The task is to transport passenger(s)
from their current location to their destination
location. Only 1 passenger can hire the taxi at a
time.

The location of the taxi is influenced by its
previous location and the action performed, which
is captured in the D-FOCI statement in Equation
3a1. Further, when executing the task of picking
up a passenger, if we assume that the taxi is going
to be empty, then we can safely say that only the
passenger’s location, the passenger in the taxi, and
the taxi’s location influence the completion of the
task. This influence is captured in Equations 3b
and 3c. Similarly, the influence information while
dropping passenger P is captured in Equation 3d–
3f.

{action,taxi at(X)} +1−→ taxi at(X) (3a)

pick(P) : {action, taxi at(X), at(P, Y),

1Variables are uppercase. Constants and predicates are
lowercase. X,Y,D,K are variables for location and P a
variable for passenger.

Springer Nature 2021 LATEX template

RePReL 7

in taxi(P)} +1−→ in taxi(P) (3b)

pick(P) : {in taxi(P)}−→Reward (3c)

drop(P) : {at dest(P)}−→Reward (3d)

drop(P) : {at(P,X), dest(P,D), at dest(P)}
−→ at dest(P) (3e)

drop(P) : {action, taxi at(X), at(P, Y),

in taxi(P)} +1−→ at(P,K) (3f)

Abstraction using D-FOCI

The state abstractor in the RePReL architec-
ture (Figure 1) uses D-FOCIs to generate model-
agnostic state abstractions. A task-specific model-
agnostic abstract representation of the state can
be derived from D-FOCI by recursively unrolling
and collecting the state literals that influence
the relevant state literals, starting from the
reward variables. Table 1 illustrates this recursive
unrolling process.

Given a state s and a grounded option, the
unrolling process begins by grounding the relevant
D-FOCI statements2 that have the Reward vari-
able on the right-hand side (RHS). To ground a
D-FOCI statement, a substitution θ is identified
that unifies the literals on the left-hand side (LHS)
with state s. Then the literals in the LHS are
collected in a relevant literals set ŝ. Then the rel-
evant D-FOCI statements that have RHS in ŝ are
grounded and substitution θ is refined and literals
on LHS are added to ŝ. Note that the substitution
is a superset of the previous substitution, that is
the existing variable assignment remains the same.
This process is repeated recursively. The recursion
ends when no new literals can be added to ŝ.

An important difference to the prior
RePReL framework [27] must be noted
here. The prior work assumed D-FOCI state-
ments were unrolled for fixed depth to obtain
propositional abstract state representation with
fixed vector size for RL agents. The current
work allows relational state representation for RL
agents, that is, graph neural network-based RL
agents with the capability of processing relational
states are used. By using the relational agents at
RL level, the framework supports state represen-
tations of varying sizes and, hence, the framework
allows varying the unrolling depth.

2with matching or null option

Given:
a. D-FOCI statements from Equation 3
b. state s = { at(p1,r), taxi at(l3), dest(p1,d1),

¬at dest(p1) ¬in taxi(p1), at(p2,b),
¬at dest(p2), ¬in taxi(p2)}

c. grounded optionoθ: pick(P) {P/p1}
Output: A set of relevant state literals: ŝ

Depth 1 unrolling:
1. Find a substitution that grounds relevant D-FOCI

statements that have reward on RHS
pick(p1): in taxi(p1) −→Reward
θ = {P/p1}

2. Collect LHS in relevant literals set ŝ
ŝ← {in taxi(p1)}

Depth 2 unrolling:
1. Find a substitution that grounds relevant D-FOCI

statements that have a relevant literal on RHS
pick(P): { action, taxi at(l3), at(p1, r),

in taxi(p1) } −→ in taxi(p1)
θ = {P/p1, X/l3, Y/r}

2. Collect LHS in set ŝ
ŝ← {in taxi(p1), action, taxi at(l3), at(p1, r)}

Depth 3 unrolling:
1. Ground applicable D-FOCI statements

that have a relevant literal (ŝ) on RHS

{action, taxi at(l3) } +1−→ taxi at(l3)
pick(p1): { action, taxi at(l3), at(p1, r),

in taxi(p1) } −→ in taxi(p1)
θ = {P/p1, X/l3, Y/r}

2. Collect LHS in set ŝ
ŝ← {in taxi(p1), action, taxi at(l3), at(p1, r)}

Table 1: Illustrative example of recursive
unrolling of the D-FOCI statements in taxi-
domain.

Theorem 1 If the MDP satisfies the influence infor-
mation of the D-FOCI statements then the above
procedure that recursively collects the set of state liter-
als that influence the relevant state literals and reward
variables is a model agnostic abstraction.

Proof (sketch): Complete grounding of the
D-FOCI statements would create a propositional
DBN with all the grounded literals as variables.
If the MDP satisfies the influence information in
this DBN then collecting all the variables influenc-
ing the reward and the relevant variables provides
model agnostic abstraction [41]. The recursive
grounding and unrolling of the D-FOCI statement
begins with the reward variable and collects all the
grounded literals influencing the reward and the
relevant grounded literals. So the set of grounded
state literals collected by this process is identi-
cal to collecting all the relevant state variables
in the propositional DBN. Hence, the recursive

Springer Nature 2021 LATEX template

8 RePReL

grounding and unrolling provide a model-agnostic
abstraction.�

3.2.2 Summary

In this problem setup, it is assumed that a high-
level symbolic planner is available that can decom-
pose the goal into a high-level plan, i.e. sequence
of grounded option, as described in Section 3.1.
In RePReL architecture, the initial state of the
world is provided as input to a symbolic planner
and a high-level plan is obtained as its output.
This high-level plan is executed by different RL
agents at the lower level. A separate RL agent
is trained for each option. The MDP of each

Algorithm 1 RePReL Algorithm

INPUT: env, goal g, domain D = 〈L,O〉, terminal
reward tR, D-FOCI statements F , num of iterations
i, num of episodes in each iteration k, batch size b
OUTPUT: RL policies πo,∀o ∈ O
1: πo,Bo,∀o ∈ O

. initialize a policy and a buffer for each option
2: for iteration ∈ i do
3: for episode ∈ k do
4: s← get state from env

5: Π← getPlan(s, g,D)
6: for oθ in Π do
7: π ← πo . get resp. policy
8: ŝ← GetAbstractState(s, oθ, F)
9: done ← ŝ ∈ β(oθ)

. check terminal state
10: while not done do
11: a← π(ŝ) . get action

12: s′ ← env.step(a) . take a step in env

13: r ← R(s, a, s′) . get step reward

14: ŝ′ ← GetAbstractState(s, oθ, F)
15: done ← ŝ′ ∈ β(oθ)

. check terminal next state
16: if done then
17: r = r+tR . add terminal reward
18: end if
19: Bo ← Bo ∪ {ŝ, a, r, ŝ′, oθ}

. push to the buffer

20: s, ŝ← s′, ŝ′

21: end while
22: end for
23: end for
24: for o ∈ O do . Update all the policies
25: πo ← UpdatePolicy(πo, SampleBatch(Bo, b))
26: end for
27: end for
28: return πo, ∀o ∈ O

RL agent is defined in Definition 3. For each
RL agent, the state abstractor provides a task-
specific abstraction, as described in Section 3.2.1.
The state abstractor uses the D-FOCI statements
to derive model-agnostic abstraction. The next
section explains how the RePReL architecture is
learned.

3.2.3 Learning

Given a taskable GRMDP environment env with
the high-level planning domain D and the D-FOCI
statements F , we now discuss the RePReL learn-
ing procedure from Algorithm 1. First, for each
option, an RL policy πo and a replay buffer BO are
initialized in line 1. Next, for the current instance
of the GRMDP problem, a high-level plan Π is
obtained from the planner in line 5. For every
grounded option in the plan, training samples are
collected in the respective buffer Bo (lines 6–22).
An abstract state representation ŝ is obtained in
line 8 and if it is not a terminal state then sam-
ples are collected in the buffer till a terminal state
is reached (lines 10–21). To collect samples, an
action a is obtained from the current policy, that
action is performed, and the next state s′ and the
reward r are observed. If s′ is a terminal state for
the ground option oθ, then a terminal reward tR
is added (line 17) before pushing it to the buffer
(line 19). Once enough samples are collected in
the buffer, the option policy πo is updated for each
option by sampling a batch from buffer Bo (lines
25–28). The process is repeated for a fixed bud-
get of episodes during evaluation but various other
stopping criteria can also be used.

3.3 Discussion

Neural or deep RL approaches are shown to be
proficient in approximating the value function
as well as the policy function in various games
and robotic domains. While in our previous work
[27] we proposed an online learning algorithm for
RePReL that used tabular Q-learning as the base
learner, in this work we present how RePReL
agents can be learned in a batch setting. This tran-
sition from online to batch learning is crucial to
facilitate the use of deep RL agents as the base
learners. With batch setting, the RePReL frame-
work can support any off-policy RL algorithm.
Additionally, we can adapt the batch RePReL
learning algorithm to any of the sampling and

Springer Nature 2021 LATEX template

RePReL 9

replay strategies to speed up the training. In
our experiments, we employ a hindsight experi-
ence replay buffer [1] with Soft Actor-Critic [18]
learner, as well as a naive buffer with Double DQN
[19] learner.

The low-level RL agents learn optimal policies
for the subgoal RMDP. As the original GRMDP
is decomposed into the subgoal RMDP by the
high-level planner, the resulting RePReL agent
is recursively optimal [6] assuming the high-level
planner and the GRMDP decompositions are opti-
mal. Note that recursively optimal policies are not
necessarily globally optimal. Rather, recursively
optimal policies ensure that lowest level policies
are locally optimal for the assigned task without
any context of the high-level task [6]. This makes
them ideal for multi-task and transfer-learning
setups.

Our framework takes an important step in con-
structing a task-specific abstract representation of
the state. Learning such abstract state represen-
tation is an active area of research in the field of
RL as well as automated planning. As our work is
at the integration of RL and Planning, it is clos-
est to Konidaris et al [29], wherein symbols or
abstract state representation are learned which are
suitable for evaluating the high-level plan. They
learn an abstract representation for the high-level
planner and assume the low-level skills and tra-
jectories are provided. In our work, we are seeking
task-specific abstract representation for efficient
learning of low-level agents.

4 Experiments

We now empirically evaluate our approach on four
multi-task domains with discrete as well as con-
tinuous state and action spaces. We compared
the RePReL framework with traditional tabular
RL, traditional symbolic RL, deep RL, hierar-
chical RL, deep relational RL, and planning+RL
approaches. We consider three different represen-
tations: 1. Predicate, we first use predicate rep-
resentation in RePReL with tabular Q-learning
as the base learner. 2. Tensor, we use tensor
representation to evaluate RePReL with double
DQN as the base learner. 3. Graph, we use graph
representation to evaluate RePReL with deep rela-
tional RL-based learners. The high-level planner
remains the same for all these representations.

Fig. 3: Office World from Illanes et al [21]

This demonstrates the generality of our proposed
framework.

All our experiments aim at assessing the sam-
ple efficiency and effectiveness of transfer across
tasks and generalization across objects. We aggre-
gate results over 5 runs with different random
seeds. We employ the Pyhop planner3 in our
experiments. We aim to demonstrate the following
key aspects of the proposed framework:
A1. RePReL framework demonstrates a signifi-

cant advantage in sample efficiency.
A2. RePReL framework facilitates effective trans-

fer across tasks.
A3. RePReL framework efficiently generalizes

across multiple objects.
A4. RePReL handles both discrete and continu-

ous state-action spaces, making it a versatile
framework for learning in real domains.

A5. RePReL batch learning algorithm adapts eas-
ily to different off-policy deep RL algorithms.

4.1 Tabular Reinforcement Learning

We considered three relational multi-task grid-
world environments: Office World, Extended
Taxi World and Relational Box World. Office
World is a 9 × 12 grid (shown in Figure 3) with
one office location (indicated with hand), two cof-
fee locations (indicated by mugs), one mailroom
(indicated by envelope), and some plants in the
office to be avoided (indicated by ∗). The agent
can perform 4 actions: up, down, right, and left.
We consider 4 tasks: Task 1. deliver mail to office;
Task 2. deliver coffee to office; Task 3. deliver mail
and coffee; and Task 4. visit locations A, B, C, D.

Our second domain is Extended Taxi World
shown in Figure 2. We extended the Taxi domain

3An HTN planner [37] written in python,
https://bitbucket.org/dananau/pyhop

Springer Nature 2021 LATEX template

10 RePReL

Fig. 4: Relational Box World

by Dietterich [6] in a few ways: the grid size is
increased to 8 × 8; the number of passengers is
increased to three; the initial location of the taxi
is randomly sampled in each iteration. Task 1 is
to drop one passenger (p1), Task 2 is to drop two
passengers (p1, p2), and Task 3 is to drop all three
passengers (p1, p2, and p3) to their respective des-
tinations in that order. Here, the taxi location and
the passenger pickup and drop locations are ran-
domly sampled at the beginning of each episode.
Passenger pickup and drop are restricted to 4 spe-
cial locations (r, g, b, or y) whereas the taxi can
be sampled at any location.

Our third domain, shown in Figure 4, is
inspired by the Box World domain in Zambaldi
et al [48]. This domain has 4 types of objects: lock,
key, gem, wall with an associated color for each
of them. A lock can be opened with a key of the
same color to access the adjacent key. The player
is equipped with sensors on each of its 8 direc-
tions (northeast,north,east,...), which detects the
relative direction of the objects. Unlike the image
representation, in our setting, the complete grid is
not visible to the agent. The goal, of each task, is
to collect the gem. Task 1 has a lock containing
the gem, the agent is initialized with the key to
open the lock. In Task 2, the agent has to first col-
lect the key and then open the lock to collect the
gem. Finally, Task 3 requires the agent to open
two locks in sequence to reach the gem. This is a
combinatorially complex domain, with 18 possible
colors. The color and the location of the locks and
keys are sampled at the beginning of each episode.

In these discrete domains, we employed two
relational RL base learners: Q-tree [9] and Gradi-
ent Boosted Q-Learning [5]. However, these RRL

methods could not converge to an optimal pol-
icy. Consequently, we use propositional tabular
Q-learning as the base learner to evaluate the
RePReL framework. Propositional state abstrac-
tions for all the options are obtained by ground-
ing the parameters, e.g. p1 in pickup(p1), to
generic objects (Skolem constants in logic) and
unrolling the D-FOCI statements. The complete
list of D-FOCI statements and the relevant state
abstractions are provided in Table 2.

To evaluate the sample efficiency induced by
RePReL abstractions, we compare it against the
seq variant of the Taskable RL [21]. We pick this
variant for two reasons: 1. The seq variant per-
formed best in all their experiments, and 2. We
aim to evaluate the effectiveness of abstractions
and thus do not learn the meta-controller intro-
duced by the partially ordered plans. We set a
budget on the number of steps for learning in each
task and evaluate the performance of RePReL
against Taskable RL (TRL), option-based Hier-
archical RL (HRL), and Q-Learning (QL). To
evaluate the transfer, we modified the RePReL
learning algorithm. Specifically, the RL policies
were initialized with transferred policy in line 1 of
Algorithm 1. We transferred the learned policies
from Task 1 to Task 2, refined the policy on Task
2, transferred it to Task 3, and so on, in increasing
order. We indicate the transferred agent perfor-
mance with a solid line in the plots and append
“+T” in the legends.

Figure 5 compares the learning curves of
RePReL with TRL, HRL, and QL agents in Office
World with a 30K budget. While TRL and HRL
use 7 different options for traveling to each loca-
tion in the domain, our RePReL framework uses
only two options; one each for pickup and deliver
operator. We define a common option for pickup
and visit operation as they have the same precon-
ditions and effects. Fig. 5a shows that RePReL
achieves the optimal reward for Task 1 in less
than 10K steps, while the baseline methods TRL,
HRL, and QL do not achieve optimality even after
30K steps. Similarly in all the other tasks, Fig.
5b–5d, we see that RePReL consistently outper-
forms TRL, HRL, and QL by converging to the
optimal policy in less than 15K steps. Hence, Fig.
5 demonstrate sample efficiency, aspect A1. Fur-
ther, Tasks 2 and 3 demonstrate that transferred
RePReL policies (RePReL+T) have a distinct
advantage in terms of sample efficiency when the

Springer Nature 2021 LATEX template

RePReL 11

task is closely related to a previously learned task.
Task 4 is independent of Task 1, 2, and 3, and
thus, the gain due to transfer is not significant.
Yet, RePReL+T converges faster than TRL+T.
Hence, Fig. 5b and 5c demonstrate the aspect A2,
effective transfer across tasks.

We present, in Fig. 6, the comparison of the
RePReL with baselines in the Extended Taxi
World. In this domain, both TRL and HRL
use 4 options for each location R, G, B, and
Y , while RePReL uses only two options, one for
picking up and the other for dropping a pas-
senger. The results clearly show that RePReL
consistently outperforms both baselines in terms
of sample efficiency (A1). RePReL with transfer
can perform Task 2 and 3 seamlessly without any
additional learning. This demonstrates the gener-
alization capability of the RePReL agent across
different passengers, aspect A3.

Our experiments in the Relational Box
World domain are presented in Fig. 7. Here, we
use two subtask policies for both the TRL and
RePReL: one for opening the lock and another for
collecting the key or gem. Since the locations of
the lock and key are not fixed, we cannot use dif-
ferent options for each location in taskable RL.
Each learning agent is provided a budget of 1.5M
steps for training in each task. We do not present
the HRL and QL baselines for this task as they
did not converge even after 5M training steps.
We see that RePReL is significantly more effi-
cient than TRL, in all three tasks (A1). Here,
Task 2 involves opening one box (i.e. collecting
the key and opening the lock) to reach the gem
and Task 3 requires opening two boxes. It can
be clearly observed that RePReL+T is able to
generalize across a number of objects when going
from Task 2 to Task 3. These transfer results in
Extended Taxi World and Relational Box World
demonstrate that RePReL generalizes well across
a varying number of objects, aspect A3.

4.2 Deep RL

Next, we aim to assess the RePReL framework
with deep RL algorithms. For this, we used double
DQN as the base learner, from the implementation
available in the RL-kit package4. We used Task

4https://github.com/rail-berkeley/rlkit

1 and 2 of Office World to evaluate the trans-
fer efficiency and Task 1–3 of the Extended Taxi
World to evaluate generalization capability. We
compare our deep RePReL agent against a dou-
ble Deep Q-Network (DQN), a Hierarchical DQN
(HDQN), and a Taskable-RL (TRL) agent. Hyper-
parameters and network architecture were tuned
for the DQN agent and used verbatim for other
agents. These hyperparameter values are summa-
rized in Table 3. We set a budget of 1e6 on the
number of steps that can be taken in the training
environment for learning in each task.

Figures 8 and 9 compare the learning curves
of the four agents on two tasks in Office World
and three tasks in Extended Taxi World. While
the RePReL, TRL and DQN agents achieve com-
parable performance in Task 2 of Office world
(Fig. 8b) and Task 1 of Extended Taxi World
(Fig. 9a), their performance significantly differs
in the remaining tasks. Solid lines with “+T”
are transferred agents. We see that all the trans-
ferred agents start at a higher average reward,
but the RePReL agent has the steepest learn-
ing curve. Hence, Figures 8 and 9 demonstrate
effective transfer (A2) and generalization across
objects (A3), respectively.

4.3 Deep Relational RL

Recently, deep relational RL approaches are pro-
posed that learn policies that can generalize across
objects [25, 31, 48]. These approaches use GNN-
based architecture and expect the input state
representation as a graph. In GNN, a graph is
a directed, multi-attribute graph that has nodes,
node attributes, directed edges, edge attributes,
and global graph attributes [3]. The computa-
tional units in GNN are combinations of “aggre-
gate” and “update” functions that take various
attributes as input, aggregate them, and update
either the node, the edge, or the global attributes
of the graph. These computational units are per-
mutation invariant and support different graph
sizes in the input. Formally, a graph is represented
as a 3-tuple G = (u, V, E), where u is a global
attribute, V = {vi}i=1:|V | is a set of nodes and vi

a node attribute, and E = {(ek, rk, sk)}k=1:|E| is
a set of edges with edge attributes (ek), receiver
node index (rk) and sender node index (sk).5 All

5Boldfont indicates a vector.

Springer Nature 2021 LATEX template

12 RePReL

0 0.5 1 1.5 2 2.5 3

·104

−6

−4

−2

0
·103

steps in env

ep
is
od
e
re
w
ar
d

RePReL
TRL
HRL
QL

(a) Task 1

3 3.5 4 4.5 5 5.5 6

·104

−6

−4

−2

0
·103

steps in env

RePReL+T RePReL TRL+T
TRL HRL+T HRL
QL+T QL

(b) Task 2

6 6.5 7 7.5 8 8.5 9

·104

−8

−6

−4

−2

0
·103

steps in env

RePReL+T RePReL TRL+T
TRL HRL+T HRL
QL+T QL

(c) Task 3

0.9 0.95 1 1.05 1.1 1.15 1.2

·105

−8

−6

−4

−2

0
·103

steps in env

RePReL+T RePReL TRL+T
TRL HRL+T HRL
QL+T QL

(d) Task 4

Fig. 5: Comparing learning curves of RePReL, TRL, HRL, and QL in the Office World environment.
Transfer algorithms are indicated by “+T”.(a) Task 1 is deliver mail, (b) Task 2 is deliver coffee, (c) Task
3 is deliver mail and coffee, and (d) Task 4 is visit A, B, C, D. Note that the RePReL and RePReL+T
curves in Task 2 are overlapping. The shaded region depicts the standard deviation.

0 20 40 60 80 100

·103

−4

−3

−2

−1

0

·103

steps in environment

ep
is
o
d
e
re
w
ar
d

RePReL
TRL
HRL
QL

(a) Task 1

100 120 140 160 180

·103

−4

−3

−2

−1

0

·103

steps in environment

RePReL+T RePReL TRL+T
TRL HRL+T HRL
QL+T QL

(b) Task 2

200 220 240 260 280

·103

−4

−3

−2

−1

0

·103

steps in environment

RePReL+T RePReL TRL+T
TRL HRL+T HRL
QL+T QL

(c) Task 3

Fig. 6: Comparing learning curves of RePReL, TRL, HRL, and QL in the Extended Taxi World. (a)
Task 1 is to drop passenger p1, (b) Task 2 is to drop p1 and p2,(c) Task 3 is to drop p1, p2, p3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

−50

−40

−30

−20

−10

0

steps in environment

ep
is
o
d
e
re
w
ar
d

RePReL
TRL

(a) Task 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

−50

−40

−30

−20

−10

0

steps in environment

RePReL+T RePReL
TRL+T TRL

(b) Task 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·106

−50

−40

−30

−20

−10

0

steps in environment

RePReL+T RePReL
TRL+T TRL

(c) Task 3

Fig. 7: Comparing learning curves of RePReL and TRL with and without transfer in the Box World
environment. (a) Task 1 is to open the lock and reach the gem. (b) Task 2 is to collect the key and then
open the lock to reach the gem. (c) Task 3 requires the agent to open two locks in sequence to reach
the gem. The shaded region depicts the standard deviation.

Springer Nature 2021 LATEX template

RePReL 13

0 0.2 0.4 0.6 0.8 1

·106

−1

−0.8

−0.6

−0.4

−0.2

0

·104

steps in env

A
ve
ra
ge

R
ew

ar
d

RePReL
TRL
HDQN
DQN

(a) Task 1

0 0.2 0.4 0.6 0.8 1

·106

−1

−0.8

−0.6

−0.4

−0.2

0

·104

steps in env

RePReL
TRL
HDQN
DQN

(b) Task 2

0 0.2 0.4 0.6 0.8 1

·106

−6

−4

−2

0

·102

steps in env

RePReL+T
TRL+T
HDQN+T
DQN+T

(c) Transfer to Task 1

0 0.2 0.4 0.6 0.8 1

·106

−8

−6

−4

−2

0

·102

steps in env

RePReL+T
TRL+T
HDQN+T
DQN+T

(d) Transfer to Task 2

Fig. 8: Comparing learning curves of deep RL based learners in the Office World environment. RePReL
compared against TRL, HDQN and DQN in (a) Task 1 deliver mail and (b)Task 2 deliver coffee. Agents
are swapped after 1e6 steps. RePReL+T compared against TRL+T, HDQN+T and DQN+T in (c) Task
1 and (d)Task 2. The shaded region depicts the standard deviation.

0.0 0.2 0.4 0.6 0.8 1.0

·106

−50
−40
−30
−20
−10

0

10

20

30

steps in environment

av
er
ag
e
re
w
ar
d

RePReL
TRL
HDQN
DQN

(a) Task 1

0.0 0.2 0.4 0.6 0.8 1.0

·106

−80
−60
−40
−20

0

20

40

60

steps in environment

80

60
RePReL RePReL+T TRL
TRL+T HDQN HDQN+T
DQN DQN+T

(b) Task 2

0.0 0.2 0.4 0.6 0.8 1.0

·106

−100

−50

0

50

100

steps in environment

RePReL RePReL+T TRL
TRL+T HDQN HDQN+T
DQN DQN+T

(c) Task 3

Fig. 9: Comparing learning curves of deep RL-based learners in the Extended Taxi World. (a)Task 1 is
to drop passenger p1,(b) Task 2 is to drop p1 and p2, (c)Task 3 is to drop p1, p2, p3. The shaded region
depicts the standard deviation.

0 1 2 3 4 5

·106

−80
−60
−40
−20

0

20

steps in env

av
er
ag
e
re
w
ar
d

RePReL
DQN

(a) Task 1

0 0.2 0.4 0.6 0.8 1

·107

−500
−400
−300
−200
−100

0

steps in env

RePReL
RePReL+T
DQN
DQN+T

(b) Task 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·107

−1

−0.8

−0.6

−0.4

−0.2
0

·103

steps in env

RePReL
RePReL+T
DQN
DQN+T

(c) Task 3

Fig. 10: Comparing learning curves of deep relational RL-based learners in the Extended Taxi World.
(a) Task 1 is to drop passenger p1, (b) Task 2 is to drop p1 and p2, (c) Task 3 is to drop p1, p2, and
p3. The shaded region depicts the standard deviation.

Springer Nature 2021 LATEX template

14 RePReL

Fig. 11: FetchBlockConstruction

the computational blocks are some combination of
the following aggregate functions (ρ) and update
functions (φ),

e′k = φe (ek,vrk ,vsk ,u) e′i = ρe→v (E′i)

v′i = φv (e′i,vi,u) e′ = ρe→u (E′)

u′ = φu (e′,v′,u) v′ = ρv→u (V ′)

where E′i = {(e′k, rk, sk)}rk=i,k=1:|E| ,

V ′ = {v′i}i=1:|V | ,

and E′ =
⋃
i

E′i= {(e′k, rk, sk)}k=1:|E| .

Since we aim to compare the generalization
capability across varying objects, we evaluate the
RePReL framework with deep relational RL as
base learners on two domains. The relational state
is represented as a fully-connected graph in both
domains. The first domain is the Extended Taxi
World described earlier. We represent each pas-
senger as a node in the graph, passenger features
as node attributes, and the taxi location as a
global attribute of the graph.

All the previous domains used discrete state
and action spaces. To demonstrate that RePReL
can handle both continuous and discrete spaces
(A4) we include a 3-dimensional robotics multi-
object manipulation domain with continuous
state and action spaces called FetchBlockCon-
struction [31]. FetchBlockConstruction, shown in
Figure 11 is based on FetchPickAndPlace [39].
This domain has multiple blocks and the task is to
move each block to its goal location. Each block is
represented as a node in the fully-connected graph
with an 18D vector consisting of block position,
orientation, relative position, cartesian velocity,

0 1 2 3 4 5 6

·105

−40

−20

0

steps in env

av
er
ag
e
re
w
ar
d
s

RePReL
ReNN

(a)

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Number of Blocks

su
cc
es
s
ra
te

RePReL
ReNN

(b)

Fig. 12: Comparing deep relational RL-based
learners in FetchBlockConstruction. (a) Compares
learning curve on the task of moving one block (b)
Evaluates generalization for moving 1–4 blocks.

angular velocity, and goal location. Features of the
robotic gripper (10D vector) are treated as global
attributes of the graph. The action space is 4D,
consisting of relative change in the 3D position
of the two-fingered parallel jaw gripper and the
distance between two fingers of the robotic arm.

We compare the RePReL framework against a
double DQN in Extended Taxi World. In Fetch-
BlockConstruction, we use the state-of-the-art
deep relational RL called Relational Neural Net-
work (ReNN) by Li et al [31]. ReNN uses a Soft
Actor-Critic (SAC) learner with hindsight expe-
rience replay (HER) strategy. In both domains,
the network architecture consists of an attention-
based message passing module, an attentive graph
pooling module, and a multi-layer-perceptron
module. This also demonstrates that RePReL
framework can be adapted to any off-policy RL
algorithm, aspect A5. For FetchBlockConstruc-
tion we use the same network parameters and
experiment settings as Li et al [31], except for one
change. Instead of using 35 parallel workers, we
used 16 workers because of resource constraints.
Table 4 summarizes the network parameters for
the Extended Taxi World.

Figure 10 presents the comparison of the
RePReL with GNN based DQN agent. Both the
agents have comparable performance in Task 1,
but RePReL shows significant advantage over
DQN in the remaining tasks (A1 and A3). The
transferred DQN agents took longer to converge
than learning DQN from scratch on Task 2 and 3.
This might be explained by the mechanism called
capacity loss, whereby networks trained to pre-
dict a sequence of target values lose their ability

Springer Nature 2021 LATEX template

RePReL 15

D-FOCI statements Option: Abstract state

Office World

{agent-at(L1), move(Dir)} +1−→ agent-at(L2)

pickup(X):
{agent-at(L1), at(X, L), with-agent(X),

move(Dir)}
{agent-at(L1), move(Dir)} −→ R
pickup(X): {agent-at(L1), at(X, L), with-agent(X)}

+1−→ with-agent(X)

pickup(X): with-agent(X) −→ Ro
deliver(X): {agent-at(L1), with-agent(X), office(L),

deliver(X):
{agent-at(L1), with-agent(X), office(L),

move(Dir), delivered(X)}delivered(X)} +1−→ delivered(X)
deliver(X): delivered(X) −→ Ro

Extended Taxi World

{taxi-at(L1), move(Dir)} +1−→ taxi-at(L2)

pickup(P):
{taxi-at(L1), at(P,L), in-taxi(P),

move(Dir)}
{taxi-at(L1), move(Dir)} −→ R
pickup(P):

{taxi-at(L1), at(P, L), in-taxi(P)} +1−→ in-taxi(P)

pickup(P): in-taxi(P) −→ Ro

drop(P):
{taxi-at(L1), in-taxi(P), dest(P,L),

at-dest(P), move(Dir)}
drop(P): {taxi-at(L1), in-taxi(P), dest(P,L),

at-dest(P)} +1−→ at-dest(P)
drop(P): at-dest(P) −→ Ro

Relational Box World
{neighbor(Dir,C), agent-at(L2), move(D)}

pick key(K):
{neighbor(Dir,C), agent-at(L1),

direction(K, Dir2), own(K), move(D)}

+1−→ agent-at(L1)
{neighbor(Dir,C), agent-at(L1), move(D)} −→ R
pick key(K): own(K) −→ Ro
pick key(K): {agent-at(L1), direction(K, Dir2),

own(K)} +1−→ own(K)

unlock(L):
{neighbor(Dir,C), agent-at(L1),

direction(L, Dir2), open(L),move(D)}
unlock(L): open(L) −→ Ro
unlock(L): {agent-at(L1), direction(L, Dir2),

open(L)} +1−→ open(L)

FetchBlockConstruction
{armfeat1(AF1), ..., armfeat10(AF10)

, action(A)} +1−→ armfeat1(AF1),

place(X):
{ armfeat1(AF1), ... armfeat10(AF10),

blockfeat1(X, BF1), ... blockfeat18(X, BF18),
action(A)}

...
{armfeat1(AF1), ..., armfeat10(AF10)

, action(A)} +1−→ armfeat10(AF10),
place(X): {blockfeat1(X, BF1), ...,

blockfeat18(X, BF18) } +1−→ blockfeat1(X, BF1),
....

place(X): {blockfeat1(X, BF1), ...,

blockfeat18(X, BF18) } +1−→ blockfeat1(X, BF1),
place(X): {armfeat1(AF1), ..., armfeat10(AF10),

action(A) } +1−→ blockfeat1(X, BF1),
...

place(X): {armfeat1(AF1), ..., armfeat10(AF10)

, action(A) } +1−→ blockfeat18(X, BF18),
place(X): {blockfeat1(X, BF1), ...,

blockfeat18(X, BF18) −→ Ro

Table 2: D-FOCI statments and relevant features (literals) of the state
that form the abstract state.

Springer Nature 2021 LATEX template

16 RePReL

Hyperparameters Values

Learning rate 0.003
Batch size 128
Max steps 1e6
Max buffer size 1e5
Hidden layers 2
Hidden units 256
Discount rate 0.99
Intrinsic reward on subgoals 30

Office World

Input size (baseline) 11
Input size (RePReL) 4 pickup & 5 drop
Output size (# of Actions) 4
Output size (metacontroller) 3
Max episode length 1000
Epsilon decay True

Extended Taxi World

Input size (baseline) 91
Input size (RePReL) 69
Output Size (# of Actions) 6
Output Size (metacontroller) 2
Max episode length (Task 1) 150
Max episode length (Task 2) 200
Max episode length (Task 3) 300
Epsilon decay false

Table 3: Summary of hyperparameters used in
deep RL experiments (Section 4.2).

Hyperparameters Values

Number of graph layers 2
Attention embedding 125

Number of attention heads 3
Number of MLP layers 2

MLP embedding 256
Activation function Leaky ReLU

Batch size 128
Task 1 max episode length 500
Task 2 max episode length 1000
Task 3 max episode length 1500

Epsilon decay True
Learning rate 0.003

Buffer size 1e6

Table 4: Summary of hyperparameters used in
deep relational RL experiment of Extended Taxi
World (Section 4.3).

to quickly fit new functions over time [2, 20, 32].
Figure 12a presents the comparison of learning
curves of the RePReL agent and the ReNN agent

on the task of moving a block to its goal loca-
tion. While RePReL and ReNN have comparable
performance on this task, we present the general-
ization results to 2–4 blocks in Figure 12b. As can
be seen, the RePReL agent can easily generalize
to multiple objects while being statistically signif-
icantly better than the baselines (demonstrating
aspect A3).

4.4 Discussion

It is important to note one of the significant dif-
ferences between the RePReL learning algorithm
and the Taskable RL learning algorithm. Taskable
RL updates all the subtask policies for every step
in the environment, while RePReL only updates
the active subtask policy for each step. With
these observations, our empirical results should
make stronger cases for sample efficiency and
generalization abilities for RePReL.

Collectively, the empirical evaluations clearly
demonstrate our central hypothesis that RePReL
allows for better generalization while
exploiting effective abstractions for effi-
cient learning. The results further demonstrate
another important aspect of this formalism—the
ability to learn in continuous as well as dis-
crete structured domains. Learning in this set-
ting is generally considered a hard task, and
our work takes a small step towards this goal.
Two important assumptions were made in this
work—that both the plan decomposition and the
D-FOCI statements were specified in advance by
the human expert, and most importantly, they are
precise and correct. Relaxing these assumptions is
an immediate future research direction.

5 Conclusion

We introduced RePReL, a unified framework that
enables efficient learning to act in structured
domains. The framework consists of three specific
components—a symbolic planner, a state abstrac-
tor, and an RL agent. The planner decomposes
the tasks into smaller options, the state abstrac-
tor computes the appropriate abstractions for the
lowest level MDP, and finally, an RL agent learns
quickly and effectively given the smaller MDP.
Our experiments demonstrate that the RePReL
is not only effective and efficient but generalizes
to unseen tasks and a larger number of objects.

Springer Nature 2021 LATEX template

RePReL 17

Interesting directions for future research include
allowing communication from the RL agent back
to the planner, allowing differentiable learning
at the high level, and automatically refining the
abstraction rules.

Acknowledgments. HK and SN grate-
fully acknowledge the support of ARO award
W911NF2010224 and AFOSR award FA9550-18-
1-0462. PT acknowledges the support of DARPA
contract N66001-17-2-4030 and NSF grant IIS-
1619433. Any opinions, findings, conclusions or
recommendations expressed in this material are
those of the authors and do not necessarily reflect
the view of the ARO, AFOSR, NSF, DARPA or
the US government. We sincerely thank Illanes
et al. (2020) for sharing the Taskable RL code
for baselines. We also thank the Starling lab
members for feedback on the manuscript.

Statements and Declarations

Competing Interests. The research leading to
these results received funding from federal grants
as mentioned in the acknowledgments. Specifi-
cally, HK and SN received the support of ARO
(award W911NF2010224) and AFOSR (award
FA9550-18-1-0462). PT received the support of
DARPA (contract N66001-17-2-4030) and NSF
(grant IIS-1619433). No conflict of interest exists
with this work.

Code availability.
https://github.com/starling-lab/RePReL

References

[1] Andrychowicz M, Wolski F, Ray A, et al
(2017) Hindsight experience replay. In:
NeurIPS, pp 5048–5058

[2] Ash JT, Adams RP (2020) On warm-starting
neural network training. In: Advances in
Neural Information Processing Systems 33:
Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual

[3] Battaglia PW, Hamrick JB, Bapst V,
et al (2018) Relational inductive biases,
deep learning, and graph networks. CoRR
abs/1806.01261

[4] Brafman RI, Tennenholtz M (2002) R-max-a
general polynomial time algorithm for near-
optimal reinforcement learning. JMLR 3:213–
231

[5] Das S, Natarajan S, Roy K, et al (2020) Fit-
ted q-learning for relational domains. CoRR
abs/2006.05595

[6] Dietterich TG (1998) The maxq method
for hierarchical reinforcement learning. In:
ICML, pp 118–126

[7] Dong H, Mao J, Lin T, et al (2019) Neural
logic machines. In: ICLR

[8] Driessens K, Ramon J, Blockeel H (2001)
Speeding up relational reinforcement learning
through the use of an incremental first order
decision tree learner. In: ECML, pp 97–108

[9] Džeroski S, De Raedt L, Driessens K (2001)
Relational reinforcement learning. Machine
learning 43(1/2):7–52

[10] Eppe M, Nguyen PDH, Wermter S (2019)
From semantics to execution: Integrating
action planning with reinforcement learning
for robotic causal problem-solving. Frontiers
in Robotics and AI 6:123

[11] Evans R, Grefenstette E (2018) Learning
explanatory rules from noisy data. JAIR
61:1–64

[12] Fern A, Yoon S, Givan R (2006) Approximate
policy iteration with a policy language bias:
Solving relational markov decision processes.
JAIR 25:75–118

[13] Ghallab M, Nau D, Traverso P (2004) Auto-
mated Planning: theory and practice. Else-
vier

[14] Givan R, Dean T, Greig M (2003) Equiv-
alence notions and model minimization in
markov decision processes. Artificial Intelli-
gence 147(1-2):163–223

[15] Grounds M, Kudenko D (2005) Combining
reinforcement learning with symbolic plan-
ning. In: AAMAS III, pp 75–86

https://github.com/starling-lab/RePReL

Springer Nature 2021 LATEX template

18 RePReL

[16] Guestrin C, Patrascu R, Schuurmans D
(2002) Algorithm-directed exploration for
model-based reinforcement learning in fac-
tored mdps. In: ICML, pp 235–242

[17] Guestrin C, Koller D, et al (2003) General-
izing plans to new environments in relational
mdps. In: IJCAI, pp 1003–1010

[18] Haarnoja T, Zhou A, Abbeel P, et al
(2018) Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a
stochastic actor. In: ICML, pp 1861–1870

[19] van Hasselt H, Guez A, Silver D (2016)
Deep reinforcement learning with double q-
learning. In: AAAI, pp 2094–2100

[20] Igl M, Farquhar G, Luketina J, et al (2021)
Transient non-stationarity and generalisation
in deep reinforcement learning. In: Interna-
tional Conference on Learning Representa-
tions

[21] Illanes L, Yan X, Icarte RT, et al (2020)
Symbolic plans as high-level instructions for
reinforcement learning. ICAPS pp 540–550

[22] Janisch J, Pevný T, Lisý V (2021) Symbolic
relational deep reinforcement learning based
on graph neural networks. RL4RealLife @
ICML

[23] Jiang Y, Yang F, Zhang S, et al (2019) Task-
motion planning with reinforcement learning
for adaptable mobile service robots. In: IROS,
pp 7529–7534

[24] Jiang Z, Luo S (2019) Neural logic reinforce-
ment learning. In: ICML, vol 97. PMLR, pp
3110–3119

[25] Jiang Z, Minervini P, Jiang M, et al (2021)
Grid-to-graph: Flexible spatial relational
inductive biases for reinforcement learning.
In: AAMAS. ACM, pp 674–682

[26] Kimura D, Ono M, Chaudhury S, et al (2021)
Neuro-symbolic reinforcement learning with
first-order logic. In: EMNLP, pp 3505–3511

[27] Kokel H, Manoharan A, Natarajan S, et al
(2021) Reprel: Integrating relational plan-
ning and reinforcement learning for effective
abstraction. ICAPS 31(1):533–541

[28] Kokel H, Manoharan A, Natarajan S, et al
(2021) Dynamic probabilistic logic mod-
els for effective abstractions in RL. CoRR
abs/2110.08318

[29] Konidaris G, Kaelbling LP, Lozano-Perez T
(2018) From skills to symbols: Learning sym-
bolic representations for abstract high-level
planning. JAIR

[30] Li L, Walsh TJ, Littman ML (2006) Towards
a unified theory of state abstraction for mdps.
In: ISAIM, p 5

[31] Li R, Jabri A, Darrell T, et al (2020)
Towards practical multi-object manipulation
using relational reinforcement learning. In:
ICRA. IEEE, pp 4051–4058

[32] Lyle C, Rowland M, Dabney W (2022)
Understanding and preventing capacity loss
in reinforcement learning. In: International
Conference on Learning Representations

[33] Lyu D, Yang F, Liu B, et al (2019) SDRL:
Interpretable and data-efficient deep rein-
forcement learning leveraging symbolic plan-
ning. In: AAAI, pp 2970–2977

[34] Manfredotti CE (2009) Modeling and infer-
ence with relational dynamic bayesian net-
works. In: CCAI, pp 287–290

[35] Natarajan S, Tadepalli P, et al (2005) Learn-
ing first-order probabilistic models with com-
bining rules. In: ICML, pp 609–616

[36] Natarajan S, Tadepalli P, et al (2008) Learn-
ing first-order probabilistic models with com-
bining rules. Ann Math Artif Intell 54(1-
3):223–256

[37] Nau D, Cao Y, Lotem A, et al (1999)
Shop: Simple hierarchical ordered planner.
In: IJCAI, pp 968–975

Springer Nature 2021 LATEX template

RePReL 19

[38] Parr R, Russell SJ (1998) Reinforcement
learning with hierarchies of machines. In:
NeurIPS, pp 1043–1049

[39] Plappert M, Andrychowicz M, Ray A,
et al (2018) Multi-goal reinforcement learn-
ing: Challenging robotics environments
and request for research. arXiv preprint
arXiv:180209464

[40] Ravindran B, Barto AG (2003) Smdp
homomorphisms: An algebraic approach to
abstraction in semi markov decision pro-
cesses. In: IJCAI, pp 1011–1018

[41] Ravindran B, Barto AG (2003) SMDP
homomorphisms: An algebraic approach to
abstraction in semi-markov decision pro-
cesses. In: IJCAI. Morgan Kaufmann, pp
1011–1018

[42] Riegel R, Gray AG, Luus FPS, et al
(2020) Logical neural networks. CoRR
abs/2006.13155

[43] Silver D, Hubert T, et al (2018) A general
reinforcement learning algorithm that mas-
ters chess, shogi, and go through self-play.
Science 362(6419):1140–1144

[44] Sutton RS, Precup D, Singh SP (1998) Intra-
option learning about temporally abstract
actions. In: ICML, pp 556–564

[45] Sutton RS, Precup D, Singh SP (1999)
Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement
learning. Artif Intell 112(1-2):181–211

[46] Vlasselaer J, Meert W, et al (2014) Efficient
probabilistic inference for dynamic relational
models. In: StarAI @ AAAI

[47] Yang F, Lyu D, Liu B, et al (2018) Peorl: Inte-
grating symbolic planning and hierarchical
reinforcement learning for robust decision-
making. IJCAI pp 4860–4866

[48] Zambaldi V, Raposo D, et al (2019) Deep
reinforcement learning with relational induc-
tive biases. In: ICLR

[49] Zhang L, Li X, Wang M, et al (2021)
Off-policy differentiable logic reinforcement
learning. In: ECML PKDD, pp 617–632

	Introduction
	Background and Related Work
	First-order Logic
	Reinforcement Learning
	Planning
	Related Work

	Integration of relational planning and reinforcement learning
	Problem Setup
	RePReL
	State Abstractor
	Summary
	Learning

	Discussion

	Experiments
	Tabular Reinforcement Learning
	Deep RL
	Deep Relational RL
	Discussion

	Conclusion
	Acknowledgments
	Competing Interests
	Code availability

