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Reinforcement Learning
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Environment

State,
Reward act ion

Relational MDP



Planning
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Long and Fox (2002)



RL

• Search through space of 
policies

• Relies on trial & error by 
interaction

Planning

• Search through space of 
states

• Relies on an explicit model 
of the environment
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Köhler (1948)
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Integrating Planning and RL
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Environment

State,
Reward act ion

Planner

initial state & task

knowledge



Execution
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Integrating Planning and RL
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Environment

State,
Reward act ion

Planner

initial state & goal

knowledge



Decomposing GRMDP
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𝑆, 𝐴, 𝑃,𝑅, 𝛾, 𝐺

𝑆,𝐴, 𝑃1,𝑅1,𝛾 Multiple subgoal RMDP:  𝑆, 𝐴, 𝑃2,𝑅2, 𝛾 𝑆, 𝐴, 𝑃𝑛, 𝑅𝑛, 𝛾. . .

Goal-directed RMDP:  



Irrelevant variables

Factored MDP represented as Dynamic Bayesian Network (DBN)
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Model-agnostic Abstraction

Dietterich NeurIPS 2000;   Ravindran and Barto IJCAI 2003; 
Givan, Dean, and Greig AI 2003;   Li, Walsh, and Littman ISAIM 2006

A model-agnostic abstraction 𝜙(𝑠) is such that for any action 
𝑎 and an abstract state ҧ𝑠, 𝜙(𝑠1)=𝜙(𝑠2) if and only if
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Graphical models
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Relational

Time

Bayesian Network 
(BN)

Dynamic 
BN

Probabilistic 
Logic Models

(PLM, PRM, BLP, 
LBN, DAPER)

Dynamic 
PLM

Koller and Friedman 2009; 
Getoor and tasker  2007;  Raedt et al. 2016 OSU: AI Seminar



First Order Conditional Influence (FOCI) statements 

if ⟨𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⟩ then ⟨𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡𝑠⟩ QINF ⟨𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡⟩

Dynamic FOCI statements

[ 𝑠𝑢𝑏𝑔𝑜𝑎𝑙 ]: 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡𝑠 ⟨𝑟𝑒𝑠𝑢𝑙𝑡𝑎𝑛𝑡⟩

Natarajan, Tadepalli, Dietterich, and Fern 2008

[    ]

D-FOCI

OSU: AI Seminar 15



D-FOCI
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Experiments  

17

Domains

– Office World

– Minecraft World

– Relational Taxi

– Relational Box World

– Craft World

– Robotic Fetch domain

Baselines

– HRL (options framework) 

– Tabular Q-learning

– Deep RL (DDQN, HDQN, SAC) 

– Deep Relational RL  

– Planning+RL (Taskable RL)

17OSU: AI Seminar



Experiments

Sample efficiency

Transfer across task

18

Deliver mail Deliver coffee Deliver mail and coffee

Office World
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Deep Relational RL
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1Kokel et al. NCAA 2022a
2Li et al. ICRA 2022 19
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AI 
Planning RL

Neural

Simulator and 
Data

Domain 
dependent 

reward

Symbolic

Domain 
knowledge 

Domain 
independent 

heuristics

Integrated 
Methods

Sample 
efficiency

Scalability

Neuro-
Symbolic
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Bridging the Gap 
Planning & RL



RL

• Search through space of 
policies

• Relies on trial & error by 
interaction

• MDP

Planning

• Search through space of 
states

• Relies on an explicit model 
of the environment

• PDDL Task

22OSU: AI Seminar



PDDL Task
ℒ,𝒪, 𝐼, 𝐺

Lifted Action Models 𝒪

MDP
⟨𝑆, 𝐴, 𝑇, 𝑅, 𝛾 ⟩
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Actions
[east, west, north, south]

(:action move
:parameters (?curpos ?nextpos ?dir)
:precondition (and (place ?curpos) 

(place ?nextpos) (at-robot ?curpos) 
(conn ?curpos ?nextpos ?dir) (open ?nextpos))

:effect (and (at-robot ?nextpos) 
(not (at-robot ?curpos))))

move(c_1_1, c_1_2, east), 
move(c_2_2, c_2_1, west),    … 
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Long and Fox (2002)

“Two actions that are applicable 
in the same state cannot have the 

same label”

E: Pre:  ¬P T



Are all the parameters 
of LAM relevant?

25

(:action pickup

:parameters (?k - key ?r - room)

:precondition (and (at ?k ?r)

(at-agent ?r)

(empty-hand))

:effect (and (not (at ?k ?r))

(not (empty-hand))

(carry ?k))

)

*

*Do they define different grounded 
actions that can be applied in a 
single state?

# of grounding = #of keys * # of rooms

25OSU: AI Seminar



Relevant parameters
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Know,

(at key1 room1) ⨁ (at key1 room2) 

So, 

(pickup key1 room1) ⨁

(pickup key1 room2)
⨁:Mutually exclusive

(:action pickup

:parameters (?k - key ?r - room)

:precondition (and (at ?k ?r)

(at-agent ?r)

(empty-hand))

:effect (and (not (at ?k ?r))

(not (empty-hand))

(carry ?k))

)

26



(pickup key1 room1),
(pickup key1 room2),
(pickup key1 room3),

.

.

.

Applicable Action Mutex Group (AAMG)
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⨁

(pickup key2 room1),
(pickup key2 room2),
(pickup key2 room3),

.

.

.

(pickup key1       ) (pickup key2       )

(pickup ?k - key ?r - room ) 

(pickup ?k – key        )⨁
Parameter Seed Set of pickup

{?k – key }

27



Action Space Reduction

28

S21
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Impact on learning RL policies
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S21
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Integrating Planning and RL
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Environment

State,
Reward act ion

Planner

initial state & task

knowledge

How to represent this 
knowledge ?

How to obtain this 
knowledge?

When/how to 
replan?

How to 
customize 
plan for 
agent’s skill

How to 
represent the 
goal?

Can this 
knowledge be 
refined?
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Questions?
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