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– LLM for search code generation

– LLM for NL2PDDL

– Benchmarking and Evaluations



Mold Makers vs 3D Printers
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Use cases?
•  Make a mold once and replicate fast, is 

consistent, and scalable

•  Costly and slow, used for bespoke, unique 

objects



LLMs as 3D Printers

Generate each piece from scratch
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• Engineer Every Response
–  Time and token costs

–  Inconsistent format, tone, and logic

–  Redundant efforts



LLMs as Mold Makers

Build Once, Use Many Times

UoSC,  Sept 26th 2025

Use the LLM to:
• Create reusable templates, frameworks, or data 

structures
• Generate code, logic flows, or prompts as "molds"

Benefits:
–  Faster inference
–  Lower costs
–  Consistency and reliability
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What is 
AI Planning?

AI Planning is a sub-field of AI 
that explores autonomous techniques to solve 

planning problems.
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What is a
Planning Problem?

Given the following description
• an initial state
• a goal (or objective)
• a set of actions that transform the state

devise a sequence of action that achieves the goal
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LLMs as Planners
LLMs as 3D Printers



COT: 
Reasoning Abilities
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Wei et al NeurIPS 2022



ReAct:
Reasoning and Tool Use/Acting
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Yao et al ICLR 2023



Tree of Thoughts:
Search
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Yao et al NeurIPS 2023
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Game of 24

Yao et al NeurIPS 2023



RAPToT

COT

LATSReasoning-via-Planning
Graph-of-thoughts
Tree-of-thoughts

ReflexionChain-Of-Thoughts
IO

and many more…
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# Calls:   1# Calls:   L# Calls:   bmL# Calls:   2 to L# Calls:   (2+L)T# Calls:   (B+2)LT# Calls:   BL# Calls:   (B+1)LT# Calls:   1
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− No guarantees of soundness
o solution generated may or may not work

− No guarantees of completeness
o can miss correct solutions

− No efficiency considerations
o extremely high # LM Evaluation 
o tackle one problem at a time
o worse !!  Generate one action at a time
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They abandon soundness and completeness for the 
sake of inefficiency !
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Game of 24

Yao et al NeurIPS 2023



User: The 24 Game is a mathematical card game in which the objective is to find a way to 
manipulate four integers so that the end result is 24. The game is played with a list of four numbers, 
and the player must use all four numbers exactly once, using any combination of addition, 
subtraction, multiplication, or division, to arrive at the number 24. If a state is defined by a list of 
numbers (4 or less), how are successor states defined? Provide only the python code that returns a 
list of successor states for a state.

ChatGPT

Katz et al NeurIPS 2024
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Below is the Python code that defines how to generate the successor states for a given state 
in the 24 Game. A state in the 24 Game is a list of numbers. The successor states are 
generated by taking two numbers from the state, applying an operation (addition, 
subtraction, multiplication, or division if the divisor isn’t zero), and then forming a new list 
with the result and the remaining unused numbers.

ChatGPT

import itertools
def generate_successor_states(state):
        successors = []
        n = len(state)
        for (i, j) in itertools.combinations(range(n), 2):
 a, b = state[i], state[j]
 remaining = [state[k] for k in range(n) if k != i and k != j]
 # Generate all possible new states
 successors.append(remaining + [a + b])
 successors.append(remaining + [a * b])
 if a > b:
      successors.append(remaining + [a - b])
 else:
      successors.append(remaining + [b - a])
 if b != 0:
      successors.append(remaining + [a / b])
 if a != 0:
      successors.append(remaining + [b / a])
         return successors
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Thought of Search

− Human can verify the code
− Plug it in to any search algorithm

o guaranteed correct solution
− Efficient

o For game of 24, all 1362 games in < 2 sec
o 1.2 queries to LLM on average for sound successor 

function
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Experiments
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100% instances solved



Thought of Search
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Katz et al NeurIPS 2024

Problem 
Description 
and Instructions

Successor 
function

Goal 
function



Auto 
Thought of Search
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Cao et al 2025 

Problem 
Description 
and Instructions

Successor 
function

Goal 
function

Goal 
Soundness 
Test

Successor 
Completeness 
Test

Successor 
Soundness 
Test

Unit Test 
Cases ++
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Unit Test 
Cases ++

Game of 24



Feedback 
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Experiments
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What is a
Planning Problem?

Given the following description
• an initial state
• a goal (or objective)
• a set of actions that transform the state

devise a sequence of action that achieves the goal
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What is a
Planning Problem?

Formally,

A classical planning problem includes
• a finite and discrete state space 𝑆
• a known initial state 𝑠0 ∈  𝑆
• a set 𝑆𝐺 ⊆  𝑆 of goal states
• a set of actions A
• a deterministic transition function 𝑠’ =  𝑓(𝑠, 𝑎)
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( define (domain grid)
   (:requirements :strips)
   (:types place - object)
   (:predicates (adj ?x ?y) 
                         (at-robot ?x))

  ( :action move
    :parameters (?from – place ?to – place)
    :precondition (and  (at-robot ?from) 
     (adj ?from ?to ))
   :effect (and (at-robot ?to) 
                      (not (at-robot ?from)))
  )
)

( define (problem small) 
   (:domain grid)
   (:objects node0-0 node0-1 …)
   (:init (at-robot node1-1) 
            (adj node0-0 node0-1) …)
   (:goal (at-robot node3-4)) 
)

  

PDDL – Planning Domain 
Definition Language



Why PDDL?

• Formal Analysis
• Standardization:
 Common language for International Planning Competition (IPC) 
• Clarity and Precision:
 important for soundness
• Tool Compatibility: 
 Allows domain-independent planning systems
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LLM+P
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Liu et al 2023



LLM-DM
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Guan et al NeurIPS 2023



NL2PDDL
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Oswald et al ICAPS 2024

Automated 
Evaluation



NL2PDDL
Error/Result Classes
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– Syntax Error: The model produced syntactically invalid PDDL.

– Semantic Error: The model produced syntactically valid PDDL, but the PDDL 
doesn’t integrate with the intended problems due to type mismatches, wrong 
number of parameters to predicates/actions, etc.

– Different Domain: The model produced syntactically valid PDDL that integrates 
with the original domain, but the underlying domains are different because they 
produce different plans for the same problem.

– (Heuristically) Equivalent Domain: The model produced syntactically valid PDDL 
that integrates with the desired domain. Plans from the original domain can be 
applied in the new domain and vice versa.
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NL2PDDL 
Call to LLM
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NL2PDDL
Prompt Variants
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NL2PDDL
Prompt Variants
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NL2PDDL
Sample Prompt
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Benchmarking and Evaluation



13 Domains*8 reasoning tasks
*can add more domains in a day

Next Action



Action 
Applicability

Xie et al. TravelPlanner
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Progression Suzgun et al. 

BigBenchHard
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Break down the outcomes of performing the action 
\"sail from location l4 to location l0\" into two lists, 
positive effects and negative effects. Positive effects 

are the propositions that are false in the current state 
but will become true after performing the action. 

Negative effects are the propositions that are true in 
the current state and will become false after performing 

the action. Provide only the two lists with the ground 
propositions.



Reachability

Yao et al. Tree of Thoughts

Impossible 
to reach 24
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Valmeekam et al. NeurIPS 23, Stein et al. 23, He et al. ACL 23, Handa et al. 2025
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GPT-OSS 120B



Planning Benchmark Desiderata
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• It should have a precise yet concise natural language description, including 

initial state, goal, and task dynamics.

• The problem should be sequential in nature, the order in which the actions 

need to be performed should matter.

• It should have a well defined action and state space.

• The problem should be of a non-trivial complexity.

• Must have sound validators for candidate solutions.

• It should have a large instance space and a dynamic generation procedure, 

thus allowing for the avoidance of memorization concerns.
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Game of 24
 Input:  4 numbers,  Target: 24,  Operations : [ +, - , /,  * ]

Count Down
 Input:  set of x numbers,  Target:  y,   Operations : [ +, - , /,  * ]

Katz, Kokel and Sreedharan 2025 
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Questions
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Future Directions

UoSC,  Sept 26th 2025



UoSC,  Sept 26th 2025

LinkedIn:  Harsha Kokel
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