
LLMs for AI Planning.

Harsha Kokel

UoSC CSCE 791
26 Sept, 2025

https://harshakokel.com

https://harshakokel.com/

Michael KatzKavitha Srinivas

External Collaborators: Sarath Sreedharan and Christian Muise

Shirin Sohrabi

James Oswald Daniel Cao

RPI Cornell University

IBM Research IBM Research IBM Research

UoSC, Sept 26th 2025

UoSC, Sept 26th 2025

Outline

UoSC, Sept 26th 2025

– LLMs as 3D Printers Mold Makers

– LLMs as MoldMakers for AI Planning

– LLM for search code generation

– LLM for NL2PDDL

– Benchmarking and Evaluations

Mold Makers vs 3D Printers

UoSC, Sept 26th 2025

Use cases?
• Make a mold once and replicate fast, is

consistent, and scalable

• Costly and slow, used for bespoke, unique

objects

LLMs as 3D Printers

Generate each piece from scratch

UoSC, Sept 26th 2025

• Engineer Every Response
– Time and token costs

– Inconsistent format, tone, and logic

– Redundant efforts

LLMs as Mold Makers

Build Once, Use Many Times

UoSC, Sept 26th 2025

Use the LLM to:
• Create reusable templates, frameworks, or data

structures
• Generate code, logic flows, or prompts as "molds"

Benefits:
– Faster inference
– Lower costs
– Consistency and reliability

Outline

UoSC, Sept 26th 2025

– LLMs as 3D Printers Mold Makers

– LLMs as MoldMakers for AI Planning

– LLM for search code generation

– LLM for NL2PDDL

– Benchmarking and Evaluations

What is
AI Planning?

AI Planning is a sub-field of AI
that explores autonomous techniques to solve

planning problems.

UoSC, Sept 26th 2025

What is a
Planning Problem?

Given the following description
• an initial state
• a goal (or objective)
• a set of actions that transform the state

devise a sequence of action that achieves the goal

UoSC, Sept 26th 2025

LLMs as Planners
LLMs as 3D Printers

COT:
Reasoning Abilities

UoSC, Sept 26th 2025
Wei et al NeurIPS 2022

ReAct:
Reasoning and Tool Use/Acting

UoSC, Sept 26th 2025
Yao et al ICLR 2023

Tree of Thoughts:
Search

UoSC, Sept 26th 2025
Yao et al NeurIPS 2023

UoSC, Sept 26th 2025

Game of 24

Yao et al NeurIPS 2023

RAPToT

COT

LATSReasoning-via-Planning
Graph-of-thoughts
Tree-of-thoughts

ReflexionChain-Of-Thoughts
IO

and many more…
UoSC, Sept 26th 2025

Calls: 1# Calls: L# Calls: bmL# Calls: 2 to L# Calls: (2+L)T# Calls: (B+2)LT# Calls: BL# Calls: (B+1)LT# Calls: 1

UoSC, Sept 26th 2025

− No guarantees of soundness
o solution generated may or may not work

− No guarantees of completeness
o can miss correct solutions

− No efficiency considerations
o extremely high # LM Evaluation
o tackle one problem at a time
o worse !! Generate one action at a time

UoSC, Sept 26th 2025

They abandon soundness and completeness for the
sake of inefficiency !

Outline

UoSC, Sept 26th 2025

– LLMs as 3D Printers Mold Makers

– LLMs as MoldMakers for AI Planning

– LLM for search code generation

– LLM for NL2PDDL

– Benchmarking and Evaluations

UoSC, Sept 26th 2025

Game of 24

Yao et al NeurIPS 2023

User: The 24 Game is a mathematical card game in which the objective is to find a way to
manipulate four integers so that the end result is 24. The game is played with a list of four numbers,
and the player must use all four numbers exactly once, using any combination of addition,
subtraction, multiplication, or division, to arrive at the number 24. If a state is defined by a list of
numbers (4 or less), how are successor states defined? Provide only the python code that returns a
list of successor states for a state.

ChatGPT

Katz et al NeurIPS 2024
UoSC, Sept 26th 2025

Below is the Python code that defines how to generate the successor states for a given state
in the 24 Game. A state in the 24 Game is a list of numbers. The successor states are
generated by taking two numbers from the state, applying an operation (addition,
subtraction, multiplication, or division if the divisor isn’t zero), and then forming a new list
with the result and the remaining unused numbers.

ChatGPT

import itertools
def generate_successor_states(state):
 successors = []
 n = len(state)
 for (i, j) in itertools.combinations(range(n), 2):
 a, b = state[i], state[j]
 remaining = [state[k] for k in range(n) if k != i and k != j]
 # Generate all possible new states
 successors.append(remaining + [a + b])
 successors.append(remaining + [a * b])
 if a > b:
 successors.append(remaining + [a - b])
 else:
 successors.append(remaining + [b - a])
 if b != 0:
 successors.append(remaining + [a / b])
 if a != 0:
 successors.append(remaining + [b / a])
 return successors

UoSC, Sept 26th 2025

UoSC, Sept 26th 2025

Thought of Search

− Human can verify the code
− Plug it in to any search algorithm

o guaranteed correct solution
− Efficient

o For game of 24, all 1362 games in < 2 sec
o 1.2 queries to LLM on average for sound successor

function

UoSC, Sept 26th 2025

Experiments

UoSC, Sept 26th 2025

100% instances solved

Thought of Search

UoSC, Sept 26th 2025
Katz et al NeurIPS 2024

Problem
Description
and Instructions

Successor
function

Goal
function

Auto
Thought of Search

UoSC, Sept 26th 2025
Cao et al 2025

Problem
Description
and Instructions

Successor
function

Goal
function

Goal
Soundness
Test

Successor
Completeness
Test

Successor
Soundness
Test

Unit Test
Cases ++

UoSC, Sept 26th 2025

Unit Test
Cases ++

Game of 24

Feedback

UoSC, Sept 26th 2025

Experiments

UoSC, Sept 26th 2025
Katz et al NeurIPS 2024

Outline

UoSC, Sept 26th 2025

– LLMs as 3D Printers Mold Makers

– LLMs as MoldMakers for AI Planning

– LLM for search code generation

– LLM for NL2PDDL

– Benchmarking and Evaluations

What is a
Planning Problem?

Given the following description
• an initial state
• a goal (or objective)
• a set of actions that transform the state

devise a sequence of action that achieves the goal

UoSC, Sept 26th 2025

What is a
Planning Problem?

Formally,

A classical planning problem includes
• a finite and discrete state space 𝑆
• a known initial state 𝑠0 ∈ 𝑆
• a set 𝑆𝐺 ⊆ 𝑆 of goal states
• a set of actions A
• a deterministic transition function 𝑠’ = 𝑓(𝑠, 𝑎)

UoSC, Sept 26th 2025

UoSC, Sept 26th 2025

(define (domain grid)
 (:requirements :strips)
 (:types place - object)
 (:predicates (adj ?x ?y)
 (at-robot ?x))

 (:action move
 :parameters (?from – place ?to – place)
 :precondition (and (at-robot ?from)
 (adj ?from ?to))
 :effect (and (at-robot ?to)
 (not (at-robot ?from)))
)
)

(define (problem small)
 (:domain grid)
 (:objects node0-0 node0-1 …)
 (:init (at-robot node1-1)
 (adj node0-0 node0-1) …)
 (:goal (at-robot node3-4))
)

PDDL – Planning Domain
Definition Language

Why PDDL?

• Formal Analysis
• Standardization:
 Common language for International Planning Competition (IPC)
• Clarity and Precision:
 important for soundness
• Tool Compatibility:
 Allows domain-independent planning systems

UoSC, Sept 26th 2025

LLM+P

UoSC, Sept 26th 2025
Liu et al 2023

LLM-DM

UoSC, Sept 26th 2025
Guan et al NeurIPS 2023

NL2PDDL

UoSC, Sept 26th 2025
Oswald et al ICAPS 2024

Automated
Evaluation

NL2PDDL
Error/Result Classes

UoSC, Sept 26th 2025

– Syntax Error: The model produced syntactically invalid PDDL.

– Semantic Error: The model produced syntactically valid PDDL, but the PDDL
doesn’t integrate with the intended problems due to type mismatches, wrong
number of parameters to predicates/actions, etc.

– Different Domain: The model produced syntactically valid PDDL that integrates
with the original domain, but the underlying domains are different because they
produce different plans for the same problem.

– (Heuristically) Equivalent Domain: The model produced syntactically valid PDDL
that integrates with the desired domain. Plans from the original domain can be
applied in the new domain and vice versa.

UoSC, Sept 26th 2025

NL2PDDL
Call to LLM

UoSC, Sept 26th 2025

NL2PDDL
Prompt Variants

UoSC, Sept 26th 2025

NL2PDDL
Prompt Variants

UoSC, Sept 26th 2025

NL2PDDL
Sample Prompt

UoSC, Sept 26th 2025

Benchmarking and Evaluation

13 Domains*8 reasoning tasks
*can add more domains in a day

Next Action

Action
Applicability

Xie et al. TravelPlanner

UoSC, Sept 26th 2025

Progression Suzgun et al.

BigBenchHard

UoSC, Sept 26th 2025

Break down the outcomes of performing the action
\"sail from location l4 to location l0\" into two lists,
positive effects and negative effects. Positive effects

are the propositions that are false in the current state
but will become true after performing the action.

Negative effects are the propositions that are true in
the current state and will become false after performing

the action. Provide only the two lists with the ground
propositions.

Reachability

Yao et al. Tree of Thoughts

Impossible
to reach 24

UoSC, Sept 26th 2025

UoSC, Sept 26th 2025
Valmeekam et al. NeurIPS 23, Stein et al. 23, He et al. ACL 23, Handa et al. 2025

UoSC, Sept 26th 2025

UoSC, Sept 26th 2025

GPT-OSS 120B

Planning Benchmark Desiderata

UoSC, Sept 26th 2025

• It should have a precise yet concise natural language description, including

initial state, goal, and task dynamics.

• The problem should be sequential in nature, the order in which the actions

need to be performed should matter.

• It should have a well defined action and state space.

• The problem should be of a non-trivial complexity.

• Must have sound validators for candidate solutions.

• It should have a large instance space and a dynamic generation procedure,

thus allowing for the avoidance of memorization concerns.

UoSC, Sept 26th 2025

Game of 24
 Input: 4 numbers, Target: 24, Operations : [+, - , /, *]

Count Down
 Input: set of x numbers, Target: y, Operations : [+, - , /, *]

Katz, Kokel and Sreedharan 2025

UoSC, Sept 26th 2025

UoSC, Sept 26th 2025

Questions

UoSC, Sept 26th 2025

Future Directions

UoSC, Sept 26th 2025

UoSC, Sept 26th 2025

LinkedIn: Harsha Kokel

References

UoSC, Sept 26th 2025

• Katz, Michael, et al. "Thought of search: Planning with language models through the lens of
efficiency.” NeurIPS 2024

• Cao, Daniel, et al. "Automating Thought of Search: A Journey Towards Soundness and Completeness.
(Student Abstract)” AAAI 2025

• Oswald, James, et al. "Large language models as planning domain generators.” ICAPS 2024.
• Kokel, Harsha, et al. "ACPBench: Reasoning about Action, Change, and Planning.” AAAI 2025.
• Kokel, Harsha, et al. "ACPBench Hard: Unrestrained Reasoning about Action, Change, and Planning." AAAI

2025 Workshop LM4Plan 2025.
• Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language models." NeurIPS 2022.
• Yao, Shunyu, et al. "Tree of thoughts: Deliberate problem solving with large language models." NeurIPS

2023.
• Yao, Shunyu, et al. "React: Synergizing reasoning and acting in language models." ICLR 2023.
• Xu, Binfeng, et al. "Rewoo: Decoupling reasoning from observations for efficient augmented language

models." arXiv:2305.18323 2023.

References

UoSC, Sept 26th 2025

• Kambhampati, Subbarao, et al. "Position: LLMs can’t plan, but can help planning in LLM-modulo
frameworks." ICML 2024.

• Huang, Wenlong, et al. "Language models as zero-shot planners: Extracting actionable knowledge for
embodied agents." ICML 2022.

• Team, Gemini, et al. "Gemini 1.5: Unlocking multimodal understanding across millions of tokens of
context." arXiv:2403.05530 2024.

• Valmeekam, Karthik, et al. "LLMs Still Can't Plan; Can LRMs? A Preliminary Evaluation of OpenAI's o1 on
PlanBench." NeurIPS 2024 Workshop on Open-World Agents.

• Hao, Shibo, et al. "Reasoning with Language Model is Planning with World Model." EMNLP 2023.
• Besta, Maciej, et al. "Graph of thoughts: Solving elaborate problems with large language models.”AAAI

2024.
• Zhou, Andy, et al. "Language Agent Tree Search Unifies Reasoning, Acting, and Planning in Language

Models." ICML 2024.
• Liu, Bo, et al. "LLM+P: Empowering large language models with optimal planning proficiency." arXiv

preprint arXiv:2304.11477 2023.

References

UoSC, Sept 26th 2025

• He, Weinan, et al. "Exploring the capacity of pretrained language models for reasoning about actions and
change." ACL 2023.

• Handa, Divij, et al. "ActionReasoningBench: Reasoning about Actions with and without Ramification
Constraints." ICLR 2025.

• Guan, Lin, et al. "Leveraging pre-trained large language models to construct and utilize world models for
model-based task planning." NeurIPS 2023

	Template slides
	Slide 1: LLMs for AI Planning. Harsha Kokel
	Slide 2
	Slide 3
	Slide 4: Outline
	Slide 5: Mold Makers vs 3D Printers
	Slide 6: LLMs as 3D Printers Generate each piece from scratch
	Slide 7: LLMs as Mold Makers Build Once, Use Many Times
	Slide 8: Outline
	Slide 9: What is AI Planning?
	Slide 10: What is a Planning Problem?

	LLMs as 3D Printers
	Slide 20: LLMs as Planners
	Slide 21: COT: Reasoning Abilities
	Slide 22: ReAct: Reasoning and Tool Use/Acting
	Slide 23: Tree of Thoughts: Search
	Slide 24: Game of 24
	Slide 25: and many more…
	Slide 26
	Slide 27

	LLMs for search code
	Slide 28: Outline
	Slide 29: Game of 24
	Slide 30
	Slide 31
	Slide 32
	Slide 33: Thought of Search
	Slide 34: Experiments
	Slide 35: Thought of Search
	Slide 36: Auto Thought of Search
	Slide 37
	Slide 38: Feedback
	Slide 39: Experiments

	LLM for NL2PDDL
	Slide 40: Outline
	Slide 41: What is a Planning Problem?
	Slide 42: What is a Planning Problem?
	Slide 43: PDDL – Planning Domain Definition Language
	Slide 44: Why PDDL?
	Slide 45: LLM+P
	Slide 46: LLM-DM
	Slide 47: NL2PDDL
	Slide 48: NL2PDDL Error/Result Classes
	Slide 49
	Slide 50: NL2PDDL Call to LLM
	Slide 51: NL2PDDL Prompt Variants
	Slide 52: NL2PDDL Prompt Variants
	Slide 53: NL2PDDL Sample Prompt
	Slide 54: Benchmarking and Evaluation
	Slide 55
	Slide 56: Action Applicability
	Slide 57: Progression
	Slide 58: Reachability
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Planning Benchmark Desiderata
	Slide 63
	Slide 64
	Slide 65
	Slide 66: Questions
	Slide 67: Future Directions
	Slide 68
	Slide 69: References
	Slide 70: References
	Slide 71: References
	Slide 72: BACK UP SLIDES
	Slide 73: Validation
	Slide 74: Action Reachability
	Slide 75: Landmarks
	Slide 76: Justification
	Slide 77
	Slide 78
	Slide 79
	Slide 80: O1 Reasoning Model
	Slide 81: Thought of Search
	Slide 82: Other

