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Contributions

• Formulate as a bi-level optimization problem 

• Use meta-gradients to solve it.

An edge sparsification algorithm for undirected graphs
Delete edges Preserve node classification accuracy
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Introduction
• Graph sparsification
• Semi-supervised node classification



Graph Sparsification

Hamann et al. 2016 

• Edge Sparsification: 
reduce the edges of a graph while preserving
structural / statistical properties of interest.
• Density for undirected graphs:

We focus on edge sparsificaton while preserving the node classification accuracy. 
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• Graph: 𝐺 = 𝐴, 𝑋 , 𝑌!, 𝑌"

Semi-Supervised Node Classification

• Example: Graph Convolution Network (GCN)

adjacency matrix
attribute matrix

labels

• Task: Node classification
• Input: (𝐴, 𝑋, 𝑌!)
• Output: predicted 𝑌"

to be predicted



The 𝒍𝒕𝒉 GCN Layer:    𝐻!"# = 𝜎(%𝐷$
!
" '𝐴%𝐷$

!
"𝐻!𝑊!)

𝑯𝟏 = 𝑿, otherwise the output of previous layer.
1𝑨 = 𝑨 + 𝑰𝑵, 1𝑫 =6

𝒋

1𝑨𝒊𝒋

𝑾: what to learn.

GCN
Two-layer GCN:



Understand intuitively:
𝑯𝟐 = 𝝈(1𝑨𝑿𝑾𝟏) when no normalization. 

Main idea: learn a node 𝑣’s representation 
by aggregating its own feature 𝑥* and its neighbors’ feature 𝑥+, 
for all  𝑢 ∈ 𝑁 𝑣 .

GCN (cont.)
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Our Approach
• Modeling the problem
• Meta-gradients
• Score matrix



Modeling the Problem
• Given:  𝐺 = 𝐴, 𝑋 ,  labeled nodes: 𝑌!.
• Goal of semi-supervised node classification:   

learn a function 𝒇𝜽 to map each node to a class.



Modeling the problem (cont.)
• Given:  𝐺 = 𝐴, 𝑋 , 

labeled nodes: 𝑌&,
number of edges to be deleted: 𝜁.

• Goal: delete edges 
but reduce the loss of node classification 
accuracy on unlabeled nodes:

𝐿'('( *𝑌) , 𝑌))

Predicted labels True labels of unlabeled nodes



Modeling the problem (cont.)
• Formulate as a bi-level optimization problem 

• Inner optimization: train the model over labeled nodes 
for predicating labels of unlabeled nodes.

• Outer objective: for the sparsifier which aims to minimize 
the loss of classification accuracy.
𝑌" is unknown to the sparsifier.

Outer

Inner



Modeling the problem

Three	options	to	approximate:
• 𝐿!"! ≈ 𝐿#$%&' :	compute	from	Y(.
• 𝐿!"! ≈ 𝐿!)*+ :	the	sparsifier can	train	a	classifier	on	labeled	data	to					

estimate	the	labels	of	unlabeled	nodes	 <𝑌, .
• 𝐿!"! ≈ 𝐿-.#/: combine Y( and <𝑌,.

unknown to the sparsifier. 



Meta-Gradients
• Adjacency	matrix	à hyperparameters
• Compute	the	gradients	of	the	sparsifier’s loss	w.r.t the	adjacency	matrix

• Indicate	how	the	sparsifier’s loss	𝐿010
will	change	after	training	on	the	simplified	graph.	



Meta-Gradients (cont.)
• Adjacency	matrix	à hyperparameters
• Compute	the	gradients	of	the	sparsifier’s loss	w.r.t the	adjacency	matrix

• Inner update:

• Outer update:



Score Matrix

• 0/1	problem:	an	edge	is	either	deleted	or	kept	(A	is	discrete)
• Score	matrix:



Score Matrix (cont.)

• Deletion: From 1 to 0;
• Positive gradients are preferred.

For weighted graphs, we can learn an indicator matrix 
initialized as 1 if there is an edge. 



Algorithm



Experimental Results
• Results on CiteSeer dataset
• Results on Cora-ML dataset



Datasets

#Nodes #Edges Density Avg 
degree

Max 
degree

Test Acc

CiteSeer 2,110 3,668 0.2 5.22 198 0.71
Cora-ML 2,810 7,981 0.4 11.36 492 0.85

• We only consider the largest connected component.
• 10% labeled nodes for training; 

90% unlabeled nodes for testing.



Cora-ML
Density: 0.4

CiteSeer
Density: 0.2



Main Observations

• Our algorithm works better than the conventional methods.
• 𝐿*+,-. works better when overfitting;
• 𝐿'/01 works better when underfitting.



Train-set Test-set

𝑳𝒕𝒓𝒂𝒊𝒏

𝑳𝒔𝒆𝒍𝒇

CiteSeer



Comparison

Ours



30% edges deleted
Test Acc : 0.73

Original Graph
Test Acc : 0.71



30% edges deleted
Test Acc : 0.71

30% edges deleted
Test Acc : 0.73Ours Local Degree



30% edges deleted
Test Acc : 0.69

30% edges deleted
Test Acc : 0.73Ours Simmelian



Train-set Test-set

𝑳𝒕𝒓𝒂𝒊𝒏

𝑳𝒔𝒆𝒍𝒇

Cora-ML



Comparison

Ours



30% edges deleted
Test Acc : 0.843

Original Graph
Test Acc : 0.848





Thank You!


