

Graph Sparsification via Meta-Learning

Guihong Wan and Harsha Kokel

Department of Computer Science The University of Texas at Dallas

An edge sparsification algorithm for undirected graphs

Formulate as a bi-level optimization problem

$$\hat{G}^* = \min_{\hat{G} \in \Phi(G)} \mathcal{L}_{sps}(f_{\theta^*}(\hat{G}), Y_U)$$

s.t. $\theta^* = \arg\min_{\theta} \mathcal{L}_{train}(f_{\theta}(\hat{G}), Y_L)$

• Use meta-gradients to solve it.

$$\nabla_{\hat{A}}^{\text{meta}} \coloneqq \nabla_{\hat{A}} \mathcal{L}_{\text{sps}}(f_{\theta^*}(\hat{A}, X), Y_U),$$

s.t. $\theta^* = \operatorname*{arg\,min}_{\theta} \mathcal{L}_{\text{train}}(f_{\theta}(\hat{A}, X), Y_L)$

Outline

Introduction

- Graph Sparsification
- Semi-Supervised Node Classification

Our Approach

- Modeling the Problem
- Meta-Gradients
- Score Matrix
- The Proposed Algorithm
- Experimental Results

Introduction

- Graph sparsification
- Semi-supervised node classification

Graph Sparsification

• Edge Sparsification:

reduce the edges of a graph while preserving structural / statistical properties of interest.

• **Density** for undirected graphs:

$$2M \longleftarrow \text{number of edges}$$

$$\overline{N(N-1)}$$

$$\uparrow$$
number of nodes

Hamann et al. 2016

We focus on edge sparsificaton while preserving the node classification accuracy.

Semi-Supervised Node Classification

- Graph: $G = (A, X), Y_L, Y_U \leftarrow to be predicted$ adjacency matrix adjacency matrix attribute matrix
- Task: Node classification
 - Input: (A, X, Y_L)
 - Output: predicted Y_U
- **Example:** Graph Convolution Network (GCN)

GCN

Two-layer GCN:

$$f_{\theta}(A, X) = \operatorname{softmax}(A'\delta(A'XW_1)W_2)$$

The *lth* GCN Layer:
$$H_{l+1} = \sigma(\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}H_lW_l)$$

$$H_1 = X$$
, otherwise the output of previous layer.
 $\widetilde{A} = A + I_N$, $\widetilde{D} = \sum_j \widetilde{A}_{ij}$

W: what to learn.

GCN (cont.)

Understand intuitively:

 $H_2 = \sigma(\widetilde{A}XW_1)$ when no normalization.

Main idea: learn a node v's representation

by aggregating its own feature x_v and its neighbors' feature x_u , for all $u \in N(v)$.

GCN (cont.)

Understand intuitively:

 $H_2 = \sigma(\widetilde{A}XW_1)$ when no normalization.

Main idea: learn a node v's representation

by aggregating its own feature x_v and its neighbors' feature x_u , for all $u \in N(v)$.

Our Approach

- Modeling the problem
- Meta-gradients
- Score matrix

Modeling the Problem

- Given: G = (A, X), labeled nodes: Y_L .
- Goal of semi-supervised node classification: learn a function f_{θ} to map each node to a class.

$$\theta^* = \underset{\theta}{\operatorname{arg\,min}} \mathcal{L}_{\operatorname{train}}(f_{\theta}(G), Y_L)$$

Modeling the problem (cont.)

• Given: G = (A, X), labeled nodes: Y_L , number of edges to be deleted: ζ .

Goal: delete edges

but reduce the loss of node classification accuracy on unlabeled nodes:

 $L_{sps}(\tilde{Y}_U, Y_U)$

Predicted labels

True labels of unlabeled nodes

Modeling the problem (cont.)

• Formulate as a bi-level optimization problem

$$\hat{G}^{*} = \min_{\hat{G} \in \Phi(G)} \mathcal{L}_{\text{sps}}(f_{\theta^{*}}(\hat{G}), Y_{U}) \qquad \text{Outer}$$

$$s.t. \quad \theta^{*} = \arg\min_{\theta} \mathcal{L}_{\text{train}}(f_{\theta}(\hat{G}), Y_{L})$$

$$\theta \qquad \text{Inner}$$

- Inner optimization: train the model over labeled nodes for predicating labels of unlabeled nodes.
- Outer objective: for the sparsifier which aims to minimize the loss of classification accuracy.

 Y_U is unknown to the sparsifier.

Modeling the problem

$$\hat{G}^* = \min_{\hat{G} \in \Phi(G)} \mathcal{L}_{sps}(f_{\theta^*}(\hat{G}), Y_U) \longleftarrow \text{ unknown to the sparsifier.}$$

s.t. $\theta^* = \arg\min_{\theta} \mathcal{L}_{train}(f_{\theta}(\hat{G}), Y_L)$

Three options to approximate:

- $L_{sps} \approx L_{train}$: compute from Y_L.
- $L_{sps} \approx L_{self}$: the sparsifier can train a classifier on labeled data to estimate the labels of unlabeled nodes \hat{Y}_U .

•
$$L_{sps} \approx L_{both}$$
: combine Y_L and \hat{Y}_U .

Meta-Gradients

- Adjacency matrix \rightarrow hyperparameters
- Compute the gradients of the sparsifier's loss w.r.t the adjacency matrix

$$\nabla_{\hat{A}}^{\text{meta}} \coloneqq \nabla_{\hat{A}} \mathcal{L}_{\text{sps}}(f_{\theta^*}(\hat{A}, X), Y_U)$$

s.t. $\theta^* = \underset{\theta}{\operatorname{arg\,min}} \mathcal{L}_{\text{train}}(f_{\theta}(\hat{A}, X), Y_L)$

• Indicate how the sparsifier's loss L_{sps} will change after training on the simplified graph.

Meta-Gradients (cont.)

- Adjacency matrix \rightarrow hyperparameters
- Compute the gradients of the sparsifier's loss w.r.t the adjacency matrix

$$\nabla_{\hat{A}}^{\text{meta}} \coloneqq \nabla_{\hat{A}} \mathcal{L}_{\text{sps}}(f_{\theta^*}(\hat{A}, X), Y_U)$$

s.t. $\theta^* = \underset{\theta}{\operatorname{arg\,min}} \mathcal{L}_{\text{train}}(f_{\theta}(\hat{A}, X), Y_L)$

• Inner update: $\theta_{t+1} = \theta_t - \alpha \nabla_{\theta_t} \mathcal{L}_{train}(f_{\theta_t}(\hat{G}), Y_L)$

• Outer update:
$$\hat{A}^{k+1} = \hat{A}^k - \beta \nabla^{\text{meta}}_{\hat{A}^k}$$
, with $\hat{A}^0 = A$

Score Matrix

$$\hat{A}^{k+1} = \hat{A}^k - \beta \nabla^{\text{meta}}_{\hat{A}^k}, \text{ with } \hat{A}^0 = A$$

- 0/1 problem: an edge is either deleted or kept (A is discrete)
- Score matrix:

$$S = \nabla^{\text{meta}}_{\hat{A}} \odot \hat{A}$$

$$e^* = \underset{e(i,j)\in \hat{A}}{\operatorname{arg\,max}} S(i,j)$$

Score Matrix (cont.)

$$\hat{A}^{k+1} = \hat{A}^k - \beta \nabla_{\hat{A}^k}^{\text{meta}}, \text{ with } \hat{A}^0 = A$$

$$S = \nabla^{\text{meta}}_{\hat{A}} \odot \hat{A}$$

• Deletion: From 1 to 0;

• Positive gradients are preferred.

For weighted graphs, we can learn an indicator matrix initialized as 1 if there is an edge.

Figure 1. Illustration of the score matrix.

Algorithm

Algorithm 1 Graph sparsification via meta-gradients

Input: Graph G = (A, X); labels Y_L ; number of edges to delete ζ ; number of training steps T; learning rate α . **Output:** $\hat{G}^* = (\hat{A}^*, X)$

1: $Y_U \leftarrow$ estimated labels of unlabeled nodes using selftraining;

2:
$$\hat{A} \leftarrow A$$
;

- 3: while $\zeta > 0$ do
- $\theta_0 \leftarrow \text{initialize randomly};$ 4:
- **for** t in $0 \dots T 1$ **do** 5: $\theta_{t+1} = \theta_t - \alpha \nabla_{\theta_t} \mathcal{L}_{\text{train}}(f_{\theta_t}(\hat{A}, X), Y_L);$ 6:

7: end for
8:
$$\nabla_{\hat{A}}^{\text{meta}} \leftarrow \nabla_{\hat{A}} \mathcal{L}_{\text{self}}(f_{\theta_T}(\hat{A}, X), \hat{Y}_U);$$

8:
$$\nabla_{\hat{A}}^{\text{meta}} \leftarrow \nabla_{\hat{A}} \mathcal{L}_{\text{self}}(f_{\theta_T}(A, X), Y)$$

9: $S = \nabla^{\text{meta}} \odot \hat{A}$

0:
$$e^* \leftarrow$$
 the maximum entry (i, j) in $S(i, j)$

D:
$$e^* \leftarrow$$
 the maximum entry (i, j) in $S(i, j)$ that satis-
fies the constraints $\Phi(G)$;

1:
$$\hat{A} \leftarrow$$
 remove edge e^* ;

12:
$$\zeta = 1;$$

13: end while
$$\hat{\alpha}^*$$

14:
$$G^* \leftarrow (A, X)$$

15: return G^* .

Experimental Results

- Results on CiteSeer dataset
- Results on Cora-ML dataset

Datasets

	#Nodes	#Edges	Density	Avg degree	Max degree	Test Acc
CiteSeer	2,110	3,668	0.2	5.22	198	0.71
Cora-ML	2,810	7,981	0.4	11.36	492	0.85

- We only consider the largest connected component.
- 10% labeled nodes for training;
 90% unlabeled nodes for testing.

Cora-ML Density: 0.4

ID THE UNIVERSITY OF TEXAS AT DALLAS

Main Observations

- Our algorithm works better than the conventional methods.
- *L*_{train} works better when overfitting;
- L_{self} works better when underfitting.

Comparison

30% edges deleted Test Acc : 0.73

Local Degree

30% edges deleted Test Acc : 0.71

ID THE UNIVERSITY OF TEXAS AT DALLAS

Test Acc : 0.69

Comparison

Thank You!