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Contributions

An edge sparsification algorithm for undirected graphs

Delete edges «—— Preserve node classification accuracy

* Formulate as a bi-level optimization problem

GA* = Amin ﬁsps(f@* (GA),YU)
Ged(G)

s.t. 0" =argmin Etrain(fg(é), YY)
0

* Use meta-gradients to solve it.

vr;lieta :=VA£SpS(f9* (IZL X)) YU)7
s.t. 0% =argmin Luain(fo(A, X), Y1)
0
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* Introduction
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« Semi-Supervised Node Classification

* Our Approach
* Modeling the Problem
* Meta-Gradients
* Score Matrix
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Introduction

* Graph sparsification
* Semi-supervised node classification
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Graph Sparsification

* Edge Sparsification:
reduce the edges of a graph while preserving
structural / statistical properties of interest.

* Density for undirected graphs:

2M <—— number of edges

N(N — 1) Hamann et al. 2016

T

number of nodes

We focus on edge sparsificaton while preserving the node classification accuracy.
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Semi-Supervised Node Classification

* Graph: G = (4,X),Y;,Yy; < tobe predicted
A
e |
adjacency matrix labels
attribute matrix

e Task: Node classification
* Input: (4,X,Y;)
* Output: predicted Yy

* Example: Graph Convolution Network (GCN)
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GCN

Two-layer GCN:

fo(A, X) = softmax(A'6 (A"’ XW1)W>)

1.1
The I'" GCN Layer: H;,; = o(D 2AD 2H,W;)

H, = X, otherwise the output of previous layer.
E=A+IN, §=Zﬁu
J

W: what to learn.
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GCN (cont.) "7 (.

Understand intuitively:

H, = 0(AXW 1) when no normalization. V3 O vy
A X AX
1 1 1 0] [*11 X12 X13 Xualo X X117+ X271 + X317 X12 + X2z + X3 |
1 1 1 1 X21 X222 X23 X4« X
1 1 1 0 X31 X32 X33 X34« X3
0 1 0 1 [X41 X42 X43 Xgq|c Xg B .

Main idea: learn a node v’s representation
by aggregating its own feature x,, and its neighbors’ feature x,,
forall u e N(v).
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Vi ’?o V2
GCN (cont.) T A

Understand intuitively:

H, = 0(AXW 1) when no normalization. V3 O vy
A X AX
1 1 1 0] [*11 X12 X13 Xualo X X117+ X271 + X317 X12 + X2z + X3 |
1 1 1 1 X21 X222 X23 X4« X
1 1 1 0 X31 X32 X33 X34« X3
0 1 0 1 [X41 X42 X43 Xgq|c Xg B .

Main idea: learn a node v’s representation
by aggregating its own feature x,, and its neighbors’ feature x,,
forall u e N(v).
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Our Approach

* Modeling the problem
 Meta-gradients
* Score matrix
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Modeling the Problem

* Given: G = (A,X), labeled nodes: Y;.
* Goal of semi-supervised node classification:

learn a function fg to map each node to a class.

0 = argmin Liain (fo(G),Yr)
0

ﬁl—D THE UNIVERSITY OF TEXAS AT DALLAS



Modeling the problem (cont.)

* Given: G = (4,X),
labeled nodes: Y;,
number of edges to be deleted: (.

* Goal: delete edges
but reduce the loss of node classification
accuracy on unlabeled nodes:

Lsps (YU ) YU )

Predicted labels True labels of unlabeled nodes
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Modeling the problem (cont.)

* Formulate as a bi-level optimization problem

GA* - Amin Lsps(fe* (é), YU) < Outer
Ged(G)
s.t. 0% =argmin Luain(fo(G), Y1)
2|
|Inner

* Inner optimization: train the model over labeled nodes
for predicating labels of unlabeled nodes.

e Quter objective: for the sparsifier which aims to minimize
the loss of classification accuracy.

Yy is unknown to the sparsifier.
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Modeling the problem

G* = min ﬁsps(fg*(é),YU) «——— unknown to the sparsifier.
Ge®(Q)

s.t. 0 =argmin Ctrain(fg(é),YL)
0

Three options to approximate:
* Lgps = Lirgin : compute from Yy,
* Lgys = Lgeip :the sparsifier can train a classifier on labeled data to

estimate the labels of unlabeled nodes Y.
* Lgps = Lpoen: combine Yp and Yy.
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Meta-Gradients

* Adjacency matrix = hyperparameters
* Compute the gradients of the sparsifier’s loss w.r.t the adjacency matrix

Vrﬁeta =V 4 Lsps (fo (121: X),Yy)
s.t. 0% = argmin Loain(fo (A, X), Y1)
0

* Indicate how the sparsifier’s loss L
will change after training on the simplified graph.

III-D THE UNIVERSITY OF TEXAS AT DALLAS



Meta-Gradients (cont.)

* Adjacency matrix = hyperparameters
* Compute the gradients of the sparsifier’s loss w.r.t the adjacency matrix

vrgeta :ZVAcspS(.fo* (A, X), YU)
s.t. 0% = argmin Loain(fo (A, X), Y1)
0

* Innerupdate: O¢p1 = 0 — Ongt,Ctrain(fgt (é), YL)

* Outerupdate: Ak+1 _ 5vr2€;ta7 with A2 = A
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Score Matrix
AR = AR - gyt with A% = A

* 0/1 problem: an edge is either deleted or kept (A is discrete)
* Score matrix:

_ ©—meta A
S—v;1 ®A

e’ = argmax S(i,7)
e(i,j)eA
e(i,5)e®(G)
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Score Matrix (cont.)

Figure 1. Illustration of the score matrix.

AR = AR - gyt with A% = A

_ ©—meta A
S—VA ®A +

e Deletion: From 1 to O;
* Positive gradients are preferred.

For weighted graphs, we can learn an indicator matrix
initialized as 1 if there is an edge.
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Algorithm
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Algorithm 1 Graph sparsification via meta-gradients

Input: Graph G = (A, X); labels Y7 ; number of edges to

de

lete (; number of training steps 7'; learning rate c.

Output: G* = (A*, X)

1:

[
S

12:
13:

14

15:

W RN RHWD

Yy < estimated labels of unlabeled nodes using self-
training;
A« A;
while ¢ >0 do
0n <« initialize randomly;
for tin0... 7' -1do A
011 = 0; — Vo, Lirain(fo, (A, X), Y1);
_end for
VI < V 1Lt for (A, X), Yu);
S=vT@o A4,
e* « the maximum entry (4, 7) in S(4,7) that satis-
fies the constraints ®(G);
A < remove edge e*;
¢—=1
end while
: G« (A, X);
return G*.




Experimental Results

e Results on CiteSeer dataset
e Results on Cora-ML dataset




Datasets

#Nodes #Edges Density Avg Max Test Acc
degree degree

CiteSeer 2,110 3,668 0.2 5.22 198 0.71
Cora-ML 2,810 7,981 0.4 11.36 492 0.85

 We only consider the largest connected component.
* 10% labeled nodes for training;
90% unlabeled nodes for testing.
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CiteSeer Cora-ML
Density: 0.2 Density: 0.4
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Main Observations

* Qur algorithm works better than the conventional methods.
L., WOrks better when overfitting;
* Lg,r Works better when underfitting.
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CiteSeer

Ltrain

Lself
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Comparison

Ours
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Original Graph 30% edges deleted
Test Acc:0.71 Test Acc:0.73
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30% edges deleted

Ours Test Acc:0.73
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Local Degree

30% edges deleted
Test Acc:0.71
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Cora-ML

Ltrain

Lself
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Thank You!
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