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1 Introduction

In the field of machine learning, causal discovery is concerned with the etiologic dependence

among variables in a set of data (Eberhardt, 2017). Whereas these causal relationships

are typically learned from direct intervention and experimentation, our aim here is to

discover such relationships directly from observed data. That “correlation does not imply

causation” suggests that standard analysis of Bayesian graphical models (BGMs), in which

the correlation of variables is learned, must be modified to infer etiologic connections. To

illustrate that we cannot simply infer causal relationships from our probability densities,

consider Figure 1 (obtained from the example in (Eberhardt, 2017), which we repeat here

to clarify).

Suppose we are investigating a causal relationship between wine drinking and heart dis-

ease. In panel (a), we postulate a direct causal relationship between these variables, which

Fig. 1: Inference and Causation
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is consistent with the data obtained from the literature. If we intervene experimentally

on wine drinking (by say, encouraging moderate wine drinking in a population as in panel

(b)), and this is in fact the causal relation that holds, we will see the expected reduction

in heart disease; we can conclude with some reliability that there is a causal relationship.

However, suppose there is a confounding factor, such as socio-economic status, that mu-

tually causes both an increase in wine consumption and a reduction in heart disease, as

depicted graphically in panel (c). Although Bayesian inference in this model demonstrates

a probabilistic relationship between the variables, when we intervene on wine drinking in

this model, there will be no change in heart disease. We see from this example very clearly

how in the setting of confounding factors, although we can infer correlative relationships

between variables, we cannot easily make causal inferences.

Owing to the inability of the probability distribution to specify the causal relations,

a separate causal graph must be defined. The directed graph G = {V,E} is defined over

the variables V and edges E. A causal graph is not designed to represent independence

relationships between variables, as in standard Bayes networks; rather, we define causal

relations such that an edge from a parent vertex to a child vertex implies a direct causal

relation from parent variable to the child variable. The notions of ancestor and descendant

variables are defined as in the case of Bayesian probabilistic networks, and can be inferred

from the graph.

The task of causal discovery over a set of variables is the unveiling from the data

as much as possible about whatever causal relations hold. This may be restated as the

inference of a causal graph from the probability distribution. Whereas we hold that there

is a difference between causation and correlation, we certainly use correlation results in this

task. Indeed, one of our objectives is to know under what circumstances can we infer causal

influence from the local probability distributions available in the Bayesian graph. There

are additional concepts connecting the notions of correlation and causation. For example,

it is generally the case that if correlation is absent between variables, then causation will

also be absent.

In causal analysis, there are the causal Markov and causal faithfulness conditions. The

causal Markov condition states that every vertex V is probabilistically independent of its

non-descendants given its parents. Causal faithfulness is a simplifying assumption stating

that if a variable X is independent from Y given a conditioning set of variables S, then

X and Y are d-separated in the graph. These assumptions assist in the causal task, since

they allow us to use d-separation (in the causal graph) to exclude causal relations between
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variables; whether there is d-separation must be inferred from the conditional probability

tables obtained from the data. Finally, we assume that the causal graph is acyclic, as in

the directed Bayesian network.

Although there are important connections between the joint probability distribution

and the causal structure, there are significant differences as well. For example, whereas

statistical information flows in any direction through the graph, causal information only

flows one way from parent to child. So if we want to estimate the causes from effects

within a given graph, we need to exclude non-causal flows of information. If we want to

learn the causal structures, we must learn which ones are consistent with the conditional

dependencies supported by the data.

In view of this, Pearl conceived the “do operator” to distinguish the inference and

causal tasks (Pearl, 2009). In particular, the inference, or observational, conditional prob-

ability between sets of variables X and Y is Pr(Y |X), and in the causal setting is denoted

Pr(Y |do(X) to indicate we are trying to infer what effect on Y follows after intervening on

X. This is termed the interventional probability. This nomenclature emphasizes the fact

that simply obtaining Pr(Y |X) from our observational data (that is, filtering the data on

a particular value of X ) is not the same as determining how the value of Y responds to an

alteration in the value of X ; it is possible that in this case, X may have been set to a value

by a process that also effects the value of Y. The task is to know how to use the local prob-

ability distributions inferred from the data to learn the interventional (sometimes termed

counterfactual) probabilities, since we are unable to actually perturb X experimentally.

Fig. 2: Illustration of the back-door criterion for identify-
ing the causal effect of X on Y.

When computing Pr(Y |do(X))

from observational data, the main

objective is to control for con-

founding variables, such as an

observed or unobserved common

cause illustrated in Figure 1. To

do this, we first perform “graph

surgery” on the Bayesian directed

graph by removing all of the edges incident on X, to ablate the flow of information through

any vertices that may be mutually causal to both X and Y. Then, we have to control

for any information paths between the variables of interest other than the direct edge be-

tween them, commonly termed back-door paths. The back-door phenomenon is illustrated

in Figure 2, (obtained from the textbook by Shalizi (Shalizi, 2013)).
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Fig. 3: Network of the proteins evaluated by Sachs et al, with the inhibitory and stimulatory
interventions labeled with red and green respectively (figure from (Sachs et al., 2005)).

Here, we see that there are several alternate paths by which information may flow

between X and Y. The back-door criterion is satisfied when there exists a set of variables

S where S blocks every back-door path from X to Y, and no node in S is a descendant of

X. When these conditions are met, the variable set S can be summed over, and the causal

probability is computed by equation 1.

Pr(Y |do(X = x)) =
∑
S

Pr(Y |X = x, S = s)Pr(S = s) (1)

.

This expression contains only observational conditional probabilities, not counterfactu-

als, and can be obtained from the observational data. This expression is derived by Pearl

(Pearl, 2009).

In this report, we applied these techniques of causal inference from observational data

to investigate the interaction between proteins in a biological system.
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2 Cellular protein activation

Biological cells commonly interact with their environment through a system of protein

receptors on the cell membrane that bind to their cognate extracellular protein ligands.

This interaction alters the receptor structure to activate its intracellular partners by phos-

phorylating some of the amino acid residues, similarly activating downstream intracellular

proteins and ultimately creating the desired biological response.

These complicated signaling cascades have been dissected by classical techniques of

chemistry and molecular biology, usually requiring the chemical lysis of cells in culture and

measuring the average phosphorylation status of a population of cells grown in culture; that

only a population of cells can be evaluate has hindered the precision of the findings. For

this reason, newer assays of intracellular protein receptor phosphorylation status have been

devised to allow the automated investigation of individual cells, so many more experiments

can be run not requiring the consideration of an entire population of cells. Each cell may

be regarded as an example of the data set, with a vector of phosphorylation levels for a set

of intracellular proteins, each of which is regarded as a random variable.

The availability of these data led to the natural consideration of BGMs to represent

and analyze the intracellular signaling network, in which the vertices of the graph represent

variables whose values correspond to the activation level of particular proteins and where

edges correspond to interactions between proteins. A depiction of the consensus phospho-

rylation circuitry in a population of human immune cells, obtained experimentally using

the classical assay methods, is presented in Figure 3.

Fig. 4: Inferred protein network.

The interaction between protein levels

in biological cells can be described as a net-

work in which some molecules, when their

phosphorylation status is altered, regulate

the phosphorylation of other molecules in

the system.

A landmark report demonstrated the

usefulness of the BGM framework in elicit-

ing such biologic signaling pathways (Sachs

et al., 2005). In this study, Sachs et al ex-

perimentally altered the phosphorylation of proteins in human immune cells using chemical

inhibitors or stimulators to selectively activate or ablate regions of the circuit. The resulting
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graph is depicted in Figure 4. (Peer, Regev, Elidan, & Friedman, 2001).

Impressively, they largely confirmed the results obtained using the classical techniques.

They elicited 17 edges, of which 15 were expected. They missed 3 edges described in the

literature. These results confirm the value of Bayesian networks for investigating biologic

signalling pathways.

3 Experiments

Fig. 5: Protein sub-network

We applied Pearl’s causal techniques to investigate the

causative interactions between protein phosphorylation in hu-

man immune cells. In particular, we studied a subset of the

molecules investigated by Sachs et al, using their protein ex-

pression data (Sachs et al., 2005). The subset of proteins

studied are shown in Figure 5. Note that this subset is a

causally sufficient set. We can see that some proteins fulfil

the backdoor criterion, we analyze those interactions using

back-door adjustment formula mentioned in 1.

3.1 Data preparation

The protein phosphorylation and expression data1 used by Sachs and her colleagues consist

of information from individual human immune cells cultured in the presence of chemical

phosphorylation inhibitors or stimulators, and then exposed to fluorescent antibodies bind-

ing selectively to particular phosphorylated moities, which stimulates fluorescence. Then,

when analyzed by a high-speed Fluorescence Activated Cell Sorting (FACS) machine, the

phosphorylation signals for specific proteins from individual cells (see Figure 3) are ob-

tained.

As with Sachs and her colleagues, we also discretized the fluorescence levels into

“low”,“medium”, and “high” categories, but due to lack of details in the paper, we were

not able replicate their discretization strategy. So, we pooled of all the data from all of

the different experiments, to obtain probability distribution over all of the possible fluores-

cence levels. We excluded the cells exhibiting fluorescence levels greater than 3 standard

deviations from the mean, as mentioned in Sachs et al., 2005. Then, under the simplifying

1 Downloaded from http://www.sciencemag.org/cgi/content/full/308/5721/523
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assumption that the data were distributed according to a mixture of Gaussian distribu-

tions, we used MATLAB to evaluate for the best parameters for mixtures (see Figure 5 for

a representative histogram). At times, insisting on a mixture of three distributions seemed

to return a mixture in which one of the mixture parameter was too low; in these cases we

looked for four mixtures (essentially splitting one of the distributions) to obtain a more

balanced distribution. We chose the discrete boundaries by inspection.

Fig. 6: Probability distribution of fluorescence values of Raf. Yellow, Orange and Green vertical
lines indicate the means of the 3-gaussian mixtures. Blue vertical line indicates the upper
boundary selected for level ’low’, and Red vertical line indicates the lower boundary selected
for the level ’high’. Any fluorescence value between these two boundaries was assigned to
level ’medium.’

3.2 Causal analysis

An early description of a technique to derive causal inferences from genetic expression

data was reported by Friedman et al (Friedman, Linial, Nachman, & Pe’er, 2000). Here,

we performed causative inference in a biological system using biological network models

described in their report, as well as in Pe’er et al (Peer et al., 2001), comparing our results

using the techniques of causal discovery discussed above with the published experimental

results.

We compared the interventional probability as mentioned in equation 1 with the con-
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(a) (b) (c)

Fig. 7: Backdoor analysis, red arrow indicates the hypothesized edge.

ditional probability for the hypothesized causal edge for the graphs shown in Figure 7(a).

If a causal edge exists then the interventional probability should not equal the conditional

probability. However, on running the experiments for the observational data we see that

the interventional probability and conditional probability are almost equal for all of these

relationships, shown in Tables 1.

From these results, we conclude that PKA is independent of PKC; we did not confirm

the dependency between these molecules discovered by Sachs and demonstrated in Figure

4. So, we remove the edge from PKA to PKC in figure 5 and we analyze two other

back-door phenomenon, shown in figure 7(b) and 7(c). Tables 2 and 3 shows all of these

probabilities are equal, suggesting that there really is no back-door communication between

PKA and Erk; neither is there a back-door communication between PKA and Mek.

Fig. 8: Network discovered by the PC
algorithm.

To further investigate these findings, we em-

ployed the PC algorithm for causal analysis, another

technique to infer the causal graph (Spirtes & Gly-

mour, 1991). The resulting graph is presented in

Figure 8. We can see that the our data do not al-

low the inference of causal relations other than those

existing between PKA and Erk, and between Raf

and Mek; again, we are unable to reconstruct the

causal structure discovered through experimental in-

terventions by Sachs et al.
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PKA RAF P(RAF|PKA) P(RAF|do(PKA))

low low 0.3036 0.2984

low medium 0.3929 0.4031

low high 0.3036 0.2984

medium low 0.3469 0.3466

medium medium 0.3010 0.3022

medium high 0.3520 0.3512

high low 0.3012 0.2998

high medium 0.3901 0.3909

high high 0.3086 0.3094

Tab. 1

Mek Erk Pr(Erk|Mek) Pr(Erk|do(Mek))

low low 0.6912 0.6921

low medium 0.2158 0.2171

low high 0.0930 0.0909

medium low 0.6462 0.6413

medium medium 0.2358 0.2371

medium high 0.1179 0.1215

high low 0.6479 0.6475

high medium 0.2254 0.2182

high high 0.1268 0.1343

Tab. 2

Raf Mek Pr(Mek|Raf) Pr(Mek|do(Raf))

low low 0.9382 0.9385

low medium 0.0582 0.0576

low high 0.0036 0.0039

medium low 0.7483 0.7463

medium medium 0.2282 0.2326

medium high 0.0235 0.0210

high low 0.3179 0.3169

high medium 0.4571 0.4599

high high 0.2250 0.2232

Tab. 3
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4 Conclusion

There are a number of reasons to explain our failure to duplicate the results of Sachs

et al. First, for the sake of computational tractability, we rather arbitrarily discretized

the phosphorylation levels for the proteins, and our “high”, “medium”, and “low” levels

probably did not conform to those of Sachs. Moreover, whereas those investigators in

their analysis imputed the phosphorylation levels to the “low” and “high” categories for

molecules under inhibition or stimulation, respectively, we used the levels as they were

presented in the data. Finally, it is certain that some of the assumptions we made in

performing the causal do-calculus do not hold in biologic systems. For example, there are

multiple feedback circuits between the molecules, so that the assumption of acyclicity does

not hold. The drawing in Figure 3 is necessarily limited to the molecules that are easily

manipulated and easily measured. In truth, there are thousands of molecules involved in

these circuits; thus, our “graph surgery” and management of the known alternate pathways

between the parent and child molecules are almost certainly failing to control all of the

confounding processes.

For these reasons, we were unsuccessful at accurately discovering causal molecular re-

lationships solely from the evaluation of observational data; there remains the great need

for interventional experiments for the elicitation of causal relationships between proteins

in biological systems.
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