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Abstract

This report compares different neurosymbolic approaches on1

a simple task of link prediction. We aim to empirically eval-2

uate DeepProbLog, PLogicNet, Neural LP, Metapath2Vec,3

ComplEx, ROCGCN, and BoostSRL on ICML CoAuthors4

dataset, to investigate the advantages of fusion of neural and5

symbolic approaches.6

1 Introduction7

The problem of link prediction (also, knowledge base com-8

pletion) is the task of discovering connections between enti-9

ties. Since knowledge bases are always incomplete (i.e. there10

are many missing links among entities) this problem is well11

studied in literature. Traditionally, two different approaches12

have been used to tackle the link prediction task.13

One is knowledge graph embedding approach. Here,14

embeddings
−→
E ,
−→
R are learnt for all the entities E and the15

relations R in the domain, then a link between entities A16

and B is predicted if there exists a relation L such that17
−→
A =

−→
B +

−→
L . TransE (Bordes et al. 2013) and Com-18

plEx (Trouillon et al. 2016) are two of the popular examples19

of this approach.20

The other approach involves learning first-order logical21

rules. Here, the relationship in the graph are represented22

as first-order predicates and from training examples gener-23

alizable first-order clauses are learnt. A link between enti-24

ties are predicted when those entities satisfy one or more25

rule. MLN (Richardson and Domingos 2006) and RDN-26

Boost (Natarajan et al. 2012) are two popular examples from27

this approach.28

Recently, there is a surge in NeuroSymbolic approaches29

that leverage the strengths of both embedding and first-order30

logic. In the next section we briefly introduce these ap-31

proaches and in section 3 we compare these approaches by32

empirically evaluating them on ICML CoAuthors link pre-33

diction task.34

2 Background35

DeepProbLog (Manhaeve et al. 2018) combines deep36

learning with probabilistic logic programming. The main37
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idea is to integrate the reasoning capability of ProbLog with 38

the detection capability of neural network. They achieve 39

it by extending the probablistic logic to incorporate neu- 40

ral predicates. The output of a neural network which can 41

be interpreted as a probability is encapsulated as a neu- 42

ral predicate. Leveraging the algebraic ProbLog formula- 43

tion, the DeepProbLog network can be trained using gra- 44

dients by back propagation. Inference is done similar to the 45

ProbLog using Sentential Decision Diagram with output of 46

neural network as probability for the ground annotated dis- 47

junctions. 48

PLogicNet (Qu and Tang 2019) combines MLNs and 49

Knowlege Graph Embeddings (KGE). MLNs are good at 50

capitalizing on the first order logic rules but struggle to ef- 51

ficiently perform inference when the domain size increases. 52

KGEs on other hand can scale well but has no way to incor- 53

porate rich domain knowledge like rules. PLogicNet uses the 54

variational EM to learn logic rules in MLN. In E step, infer- 55

ence is performed where the variational distribution is pa- 56

rameterized as a knowledge graph embedding model and in 57

M step weights are optimized using both the observed facts 58

and the facts inferred by the knowledge graph embedding 59

model. 60

Neural LP Neural Logic Programming (Yang, Yang, and 61

Cohen 2017) is an end-to-end differentiable model, which 62

can learn probabilistic first-order logical rules. This ap- 63

proach is based on a previous differentiable logic Tensor- 64

Log (Cohen 2016). It is a neural controller system with an 65

attention mechanism to select a subset of TensorLog’s op- 66

erations and do those operations on contents chosen from 67

the memory. Then after the system is trained, logical rules 68

can be recovered by tracking the attention of the system on 69

examples. It performs well in statistical relation learning, 70

grid path finding, knowledge base completion and question 71

ansewring against knowledge base. 72

Metapath2Vec (Dong, Chawla, and Swami 2017) con- 73

structs heterogeneous neighborhood of each node by do- 74

ing meta-path-based random walks, and generates node (en- 75

tity) embeddings by a heterogeneous skip-gram model. It 76

extends word2vec (Mikolov et al. 2013a,b)-based network 77



Method Recall Precision F1 AUC-PR AUC-ROC
MLN-Boost 0.651±0.23 0.10±0.07 0.146±0.09 0.23±0.09 0.8±0.05
RDN-Boost 0.638±0.18 0.1±0.06 0.154±0.08 0.235±0.05 0.750±0.07
PLogicNet1 0.585±0.05 0.867±0.06 0.699±0.05 0.728±0.08 0.933±0.05
Neural-LP 0.903±0.10 0.095±0.01 0.172±0.02 0.257±0.08 0.912±0.05

Metapath2Vec 0.884±0.05 0.169±0.03 0.283±0.05 0.373±0.09 0.941±0.01
ComplEx 0.755±0.14 0.097±0.02 0.171±0.04 0.185±0.10 0.863±0.07
ROCGCN 0.389 1.0 0.561 0.556

Table 1: Results of different methods.

MLN/RDN PLogic Neural Metapath ComplEx ROCGCN
Boost Net LP -2Vec

Used Validation Set? × X X X × X
Used negative examples in training? X × × X × X

Provides Logic Rules? X × × × × ×
Documentation available? X × X X X ×

GPU used? × X × × × ×
No of iterations? 20 Trees 10000 5− 10 1+ ≤ 2000 4000 200

Embedding Dimension? NA 100 128 128 50 16

Table 2: Setting used in each method

representation learning from homogeneous networks to het-78

erogeneous networks. The further latent-space representa-79

tion learning helps model similarities between nodes with-80

out connected meta-paths. Hence it performs well in het-81

erogeneous network mining tasks. It can be used for node82

classification, clustering, similarity search and structural and83

semantic correlations between diverse network objects.84

ComplEx (Trouillon et al. 2016), use complex valued em-85

beddings which works well for binary, symmetric and an-86

tisymmetric relations. In knowledge base, each entity can87

appear as subject or object. So for each entity, it is sup-88

posed to have different embeddings as subject and object.89

The complex conjugate of the object embedding vector of90

each entity is its subject embedding vector in ComplEx.91

ComplEx is scalable since it only uses Hermitian dot prod-92

uct and it is linear in both space and time complexity. As93

evaluated in (Trouillon et al. 2016), ComplEx outperforms94

DistMult (Yang et al. 2015) which does not model antisym-95

metry and TransE (Bordes et al. 2013) which though is not96

a symmetric model.97

ROCGCN Relational One-Class GCN (ROCGCN) is98

a relational extension to Graph Convolutional Network99

(GCN). It leverages the success of statistical relational learn-100

ing (SRL) by constructing a secondary graph using rela-101

tional density estimation. ROCGCN outperforms many re-102

cent methods on link prediction and node classification tasks103

over multiple data sets.104

1Used TransE variant in PLogicNet

3 Empirical Evaluations 105

We compare these NeuroSymbolic approaches for link pre- 106

diction on an ICML CoAuthors prediction task. This dataset 107

is extracted from the publication information of ICML 2018 108

and consists of 556 entities and 5 relations. Entities in- 109

cluded are of 5 types: author, institute, type-of-institute 110

(for e.g. company or university), location, topic. Relation- 111

ships include is-type-of (an institute is a type of university 112

or company), interested-in-topic (an author is interested in 113

some research topic), affiliated-with (an author is affiliated 114

with some institute), located-at (every institute is located at 115

some place), and coauthor. The target predicate is coauthor, 116

whether two authors have a publication together. 117

Figure 1: Precision Recall Curve

The positive and negative target predicates are splitted 118

randomly into 5 folds with roughly equal sizes. About 31 119

positive examples and 1299 negative examples in each fold. 120



Each fold is considered as test data, and the remaining folds121

are considered as train data. So, about 124 positive examples122

and 5196 negative examples for training. For experiments123

where we needed validation set, we train on 3 folds, validate124

on 1 and test on 1. Table 2 summarizes our experimental125

setup for each method.126

We note that we were not able to evaluate the Deep-127

ProbLog, since we could not get the parameter learning in128

ProbLog to work. Hence, we skip DeepProbLog from our129

evaluation. In addition to the above mentioned NeuroSym-130

bolic method, we include the MLN-Boost and RDN-Boost131

in our evaluations.132

The average and standard deviation of recall, precision,133

F1, AUC-PR and AUC-ROC of 5 folds is shown in the Table134

1. The results on individual folds can be found in the Table135

3 in Appendix.136

Since the ICML CoAuthors domain is highly imbalanced,137

we present the PR curves in Figure 1. We see that the PLog-138

icNet outperforms all the other approaches. We think this139

is because PLogicNet iterates between predicting links and140

learning MLN. While the other approaches optimize on only141

the observed data, PLogicNet optimizes even on inferred142

data from the KGEs. However, we acknowledge that pLog-143

icNet used a validation set and the improved result could144

be an artifact of that. To remove the use of validation set145

and observing the performance without it remains for future146

analysis.147

It seems that a NeuroSymbolic method can perform very148

well when both the neural and symbolic parts are optimized149

simultaneously or iteratively, which improves the overall150

performance.151
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Appendix

Method Test Fold Recall Precision F1 AUC-PR AUC-ROC
MLN-Boost fold 1 0.935 0.034 0.067 0.368 0.816
MLN-Boost fold 2 0.645 0.054 0.10 0.097 0.746
MLN-Boost fold 3 0.870 0.039 0.074 0.280 0.808
MLN-Boost fold 4 0.516 0.20 0.29 0.237 0.888
MLN-Boost fold 5 0.290 0.16 0.20 0.177 0.780
MLN-Boost average 0.651±0.23 0.10±0.07 0.146±0.09 0.23±0.09 0.8±0.05
RDN-Boost fold 1 1.00 0.023 0.046 0.184 0.657
RDN-Boost fold 2 0.580 0.05 0.09 0.25 0.707
RDN-Boost fold 3 0.548 0.078 0.137 0.223 0.754
RDN-Boost fold 4 0.612 0.165 0.260 0.32 0.848
RDN-Boost fold 5 0.45 0.170 0.24 0.2 0.780
RDN-Boost average 0.638±0.18 0.1±0.06 0.154±0.08 0.235±0.05 0.750±0.07
PLogicNet fold 1 0.645 0.952 0.769 0.790 0.972
PLogicNet fold 2 0.548 0.809 0.653 0.584 0.828
PLogicNet fold 3 0.548 0.772 0.641 0.702 0.954
PLogicNet fold 4 0.64 0.909 0.754 0.815 0.965
PLogicNet fold 5 0.548 0.894 0.68 0.751 0.951
PLogicNet average 0.585±0.05 0.867±0.06 0.699±0.05 0.728±0.08 0.933±0.05
Neural-LP fold 1 0.935 0.105 0.190 0.235 0.923
Neural-LP fold 2 0.742 0.077 0.140 0.163 0.820
Neural-LP fold 3 0.903 0.086 0.157 0.206 0.931
Neural-LP fold 4 1.0 0.105 0.190 0.314 0.966
Neural-LP fold 5 0.935 0.101 0.182 0.367 0.920
Neural-LP average 0.903±0.10 0.095±0.01 0.172±0.02 0.257±0.08 0.912±0.05

Metapath2Vec fold 1 0.871 0.214 0.344 0.366 0.942
Metapath2Vec fold 2 0.935 0.167 0.283 0.286 0.956
Metapath2Vec fold 3 0.935 0.146 0.252 0.368 0.943
Metapath2Vec fold 4 0.871 0.131 0.228 0.328 0.938
Metapath2Vec fold 5 0.806 0.189 0.307 0.517 0.926
Metapath2Vec average 0.884±0.05 0.169±0.03 0.283±0.05 0.373±0.09 0.941±0.01

ComplEx fold 1 0.645 0.079 0.141 0.104 0.814
ComplEx fold 2 0.581 0.075 0.132 0.116 0.772
ComplEx fold 3 0.774 0.102 0.180 0.197 0.893
ComplEx fold 4 0.871 0.102 0.183 0.344 0.924
ComplEx fold 5 0.903 0.126 0.221 0.165 0.912
ComplEx average 0.755±0.14 0.097±0.02 0.171±0.04 0.185±0.10 0.863±0.07
ROCGCN average 0.389 1.0 0.561 0.556

Table 3: Detailed results of 5 folds.


