FEW-SHOT LEARNING WITH
GRAPH NEURAL NETWORKS

Victor Garcia, Joan Bruna ICLR 2018

Presented by - Harsha Kokel, Zelun Kong
in

https://personal.utdallas.edu/~fxc190007/courses/20S-7301/

Problem

m Qg-shot K-way classification

ldea

m Present images as fully connected graph

- Images as nodes]/ S 0 Vf %

- Similarity as edges

,:':_Saz'—- \ﬁ

e —
]«

>
\

Dataset {(7:Y:),}i<c

data b P/K

(/\\ /7

T: < i($1,l1),...($s,ls):i, i.’f?l,...

7i7°}l aifla K 7£t}/; >
WV

—

Y = (y1,...,m) € {1, K}

For g-shot K-way classification
r=0,t=1ands =gk,

—

L supervised samples unsupervised samples test samples

*

l; € {1, K}, T, T ;,Z~Pi (RN)

* Ignore unsupervised samples for now,
They will be used for semi-supervised and
active learning setting

Objective

mln—z 0P 7;,@),Y;) + R(O)

<L
loss w.r.t. test samples regularizer

For g-shot K-way classification
Cross entropy loss with t=1,

L(®(T;0),Y)=—> wyrlog P(Y = y|T)

Nodes - embedding

Edge - distance metric

i) A;i=pg

Fc-Layer(1)

Fc-Layer(nf), Batch

e Norm., Leaky Relu
5 Fc-Layer(nf*2), Batch
X Norm, Leaky Relu

(I,bS(XEk) — xgk))

(

()

X,

,xgk)) = MLP, (abs (x

Identity ¢;(a,a) =0

1

Symmetry Yo (a,b) = Po (b,a)

Proposed model "

() . . .
: % —7.: .\":"’. . . "'l":“ &R \ e r j“"l' ; '
0|5 Tele| YO Mle| P
: L\ ju} oL ‘ ' | (W) i 4 |
k S b o % £ N~ | B o
@ (209 Co:z0 O]
i # Vo 0 t S w TN O v
| o Sy o . ! -~ C ®)
" = ' = v = ' 3
‘{ = < - Vo < _ 1
L e Tl e i g0 ®— w7
1 Lo — >~)

Figure 2: Graph Neural Network ilustration. The Adjacency matrix is computed before every Con-
volutional Layer.

Proposed model

xl(k+1): Gc() Z Bx! Hgi)l JI=di...dr1
BeA
pk+1) [thk‘ I}~x.lzk+ l)“mxf\k_w n]
.A = {A(k), 1} block-k t

Graph conv block
4

k k ,
O — {95)7”” |.A|} H(B) c dexdk+1 V‘“‘) A&k)

X(k) c RVXdk

R (k) (k)
X(k—l—l) c RVXdk—{—l A?J YU(X 1 Xj)

V) =[x, 9, .)

sed model

(k+1) k+1
= 1X) 1 X2 Xy

L]

1) block-k

Propo

Graph conv block

4

\“':k) A(k)
\:A7| = ;g[xf;‘-:'.x';;'-:‘}
vim =[x, x{, L xl
‘4(}".) ":J.'+I|
1.1) AMatrix |/ 1.2) Ge block
Fc-Layer(1) Concatenate
2x Fe-Layer(nf), Batch Batch Norm, Leaky
Norm., Leaky Relu Relu
2x FoLayar(ni’2), Belch Graph Convolution(48)

Norm, Leaky Relu

(k)

),

s (k)
ul).sl,xl — X

y® Ak

v(k+l)

1.2) Gce block ﬁ

Concatenate .~

Batch Norm, Leaky
Relu

Graph Convolution(48)

Siamese Neural Network for one-shot «FN
Koch, Zemel & Salakhutdinov (2015)

R
N 3
“
‘ 08
~

\d N
N /N N
\ - N\
\ —— O
/ /
/
\

: | _~"probability
" ofinput1&?2are
in the same class

A J
\
AN \\D
\\ \\ .
N\ N\
N\ AN

embed 2

[getve) "4 —> LB)=), 1,5, logp(;x)+ (1 —1,-,)log(l — p(x;, X))
N 5o Suff’

X gV
TCS 47 W@ — cs(x) = c(arg max P(X, X;)) i r%@kdk A

X;ES

A

Siamese Neural Network for one-shot
Koch, Zemel & Salakhutdinov (2015)

A A

o(x) h(l
N\)i =N

~ ‘ \)|]

(D(.LI,.‘) I— GNN — p(Y | T) embed 1 O

/“ ——] [: probability
" N o i N J pfirr:puH & Zlare
V(nodes) oNN TV K inthesamedss
f distance

embed 2

x; = (¢(x:), h(ls)) fo(z:) = ¢(z:)
A j= pg(xix;) = ||p(x:) — ¢(z;)|l, A = softmax(—y)

9 71(0 0
Vo= A0 u)
J

Matching Network

Vinyals et al., 2016

cs(®) = POY[x,) =) a(x, x;)y;, where § = {(x;, y)}L
i=1

o x) = exp(cosine(f(x), g(x;)) 0 = arg max Er 1 [Es 1B [

Zjlle exp(cosine(f(x), g(x/))

Matching Network

Vinyals et al., 2016

olx) h(l)

A
PR U—

\ [
N

o(x)

-
=
— GNN — p(Y | T)
—

_ J

v (nodes) R

. . . . ~(k .
» matching networks consider attention mechanisms of the form 4.,— o(xx") , where x{" is the

encoding function for the elements of the support set, obtained with bidirectional LSTMs -

independently of the target image
e the label and image fields are treated separately throughout the model, with a final step that

aggregates linearly the labels using a trained kernel

Prototypical Network

Snell, Swersky & Zemel, 2017

Z fH(Xz)

(x Yi)ESc

L(O) = —log Py(y = c|x).

P(y = c|x) = softmax(—d,(fp(x), v.)) = exp(=dy (fo(X), Vc))

Zc'eC eXp(—d(,,(fg(x), Ve))

distance = squared euclidean distance

Prototypical Network

Snell, Swersky & Zemel, 2017

[
[=
— - GNN — p(Y | T)
—

v (nodes) -

J0) _ gt ifl; =1,
L) 0 otherwise.

g is the number of examples per class

Semi-supervised

0@ labeled data

————— decision boundary (labeled)
(O unlabeled data
decision boundary (labeled and unlabeled)

= =
I

oil) 00 p Cozo}(o}oxoxo) O
.y 0] x

http://pages.cs.wisc.edu/~jerryzhu/pub/sslicmI|O7.pdf

Semi-supervised

T = ;{(:cl, ll), e (CL‘S, ls)};, \{531, ce ’j""}J ,:{:1‘31, e ,Q_Zt}/;

" " "

supervised samples unsupervised samples test samples

mr>0 and t=1
m Same as few shot

m h(¥) : Uniform distribution for all { %4,..%,}

Active Learning

é\/ng
b4
838383 Wy
X
b
23 23 w1
232333 ©
% s o ©
© o
O
OQO
© o
O

https://gkunapuli.github.io/files/cs6375/06-SupportVectorMachines.pdf

Active Learning

&
23 W
X
® X y -
2383 e
% 83 8\/}) w1
O
e 3 . &
% P o °
&J O o
& . P o
© o
query @) O e
O (L

https://gkunapuli.github.io/files/cs6375/06-SupportVectorMachines.pdf

Active Leamlng T = {@nh), o @0 b)), {F1ree @} {21,800

o
~ ~" ~"

supervised samples unsupervised samples test samples

m r>0andt=1
m Can query label for { ¥,.. %, } after 15t layer of GNN using softmax attention node

m Random sampling based on attention multinomial probability is used to choose the
queried label during training. Argmax is used at the test time.

m Intuition: The network will learn to ask for the most informative label in order to
classify the target sample.

Attention = Softmax(g(x §[1) }))

w - h(li+) = (Attention’, h(l1, . 1))
xir) = [Ge(x), x\V] = [Ge(x(), (é(xi+), h(li+))]

Experiments

Omniglot: Few shot Learning

5-Way 20-Way
Model 1-shot 5-shot 1-shot 5-shot
Pixels Vinyals et al.[(2016) 41.7% 63.2% 26.7% 42.6%
Siamese Net Kochet al.[(2015) 97.3% 98.4% 88.2% 97.0%
Matching Networks Vinyals et al/(2016) 98.1% 98.9% 93.8% 98.5%
N. Statistician [l«dv. ards & Storkey \670163 98.1% 99.5% 93.2% 98.1%
Res. Pair-Wise | Mehrotra & Dukkipati 67017# - - 94.8% -
Prototypical Networks Snell et al.|(2017) 97.4% 99.3% 95.4% 98.8%
ConvNet with Memory Kaiser et al. 17017} 98.4% 99.6% 95.0% 98.6%
Agnostic Meta-learner Finn et al.|(2017) 98.7 +£0.4% 99.9 +-0.3% 95.8 +0.3% 98.9 +0.2%
Meta Networks Munkhdalai & Yu (2017) 98.9% 97.0%
TCML Mishra et al. \17017» 98.96% +0.20% 99.75% :bO 11% 97.64% +0.30% 99.36% :bO 18%
Our GNN 99.2% 99.7% 97.4% 99.0%

m The TCML approach from Mishra et al. (2017) is in the same confidence interval for
3 out of 4 experiments, but it is slightly better for the 20-Way 5-shot, although the
number of parameters is reduced from ~ 5M (TCML) to ~300K (3 layers GNN).

Experiments

Mini-lmagenet: Few shot Learning

5-Way

Model 1-shot S-shot
Matching Networks vinyais et al. (2016) 43.6% 35.3%
Prototypical Networks sneil et al.|(2017) - 46.61% +0.78% 65.77% +0.70%
Model Agnostic Meta-learner Finnet al. qzom 48.70% +1.84% 63.1% +0.92%
Meta Networks Munkhdalai & Yu/(2017) 49.21% +0.96 -

Ravi & Larochelle|Ravi & Larochelie|(2016) 43.4% +0.77% 60.2% +0.71%
TCML Mishra et al.|(2017) 55.71% +0.99% 68.88% +0.92%
Our metric learning + KNN 49.449% +0.28% 64.02% +0.51%
Our GNN 50.33% +0.36% 66.41% +0.63%

m Our metric learning + KNN - no aggregation of nodes

m the TCML architecture in Mini-lmagenet, the number of parameters is reduced from
11M (TCML) to 400K (3 layers GNN).

Experiments

5-Way 5-shot

Model 20%-labeled 40%-labeled 100%-labeled
GNN - Trained only with labeled 99.18% 99.59% 99.71%
GNN - Semi supervised 99.59% 99.63% 99.71%

Table 3: Semi-Supervised Learning — Omniglot accuracies.

5-Way 5-shot

Model 20% -labeled 40% -labeled 100% -1abeled
GNN - Trained only with labeled 50.33% +£0.36% 56.91% +0.42% 66.41% +0.63%
GNN - Semi supervised 52.45% +0.88% 58.76% +0.86% 66.41% +0.63%

Mini-lmagenet: semi-supervised Learning

m labeled samples are balanced among classes

m In 5-Way b-shot 20%-labeled setting, the GNN receives as input 1 labeled sample per
class and 4 unlabeled samples per class, where as "Trained only with labeled” is
equivalent to the 5-way 1-shot learning

Experiments

Active learning

Method 5-Way S-shot 20%-labeled Method 5-Way 5-shot 20%-labeled

GNN - AL 99.62% GNN - AL 55.99% +1.35%

GNN - Random 99.59% GNN - Random 52.56% +1.18%
Omniglot Mini-lmagenet

m GNN-AL queries sample for label by Active Learning, GNN - Random queries sample
randomly.

m 20% of the samples are labeled

THANKS

Omniglot

Dataset: Omniglot is a dataset of 1623 characters from 50 different alphabets, each character/class
has been drawn by 20 different people. Following Vinyals et al. (2016) implementation we split the
dataset into 1200 classes for training and the remaining 423 for testing. We augmented the dataset
by multiples of 90 degrees as proposed by Santoro et al.|(2016).

Architectures: Inspired by the embedding architecture from Vinyals et al.| (2016), following
Mishra et al.|(2017), a CNN was used as an embedding ¢ function consisting of four stacked blocks
of {3 x3-convolutional layer with 64 filters, batch-normalization, 2 x 2 max-pooling, leaky-relu} the
output is passed through a fully connected layer resulting in al 64-dimensional embedding. For the
GNN we used 3 blocks each of them composed by 1) a module that computes the adjacency matrix
and 2) a graph convolutional layer. A more detailed description of each block can be found at Figure

Mini-Imagenet

Dataset: Mini-Imagenet is a more challenging dataset for one-shot learning proposed by
et al.|(2016) derived from the original ILSVRC-12 dataset Krizhevsky et al.|(2012). It consists of
84 x84 RGB images from 100 different classes with 600 samples per class. It was created with the
purpose of increasing the complexity for one-shot tasks while keeping the simplicity of a light size
dataset, that makes it suitable for fast prototyping. We used the splits proposed by Ravi & Larochelle
of 64 classes for training, 16 for validation and 20 for testing. Using 64 classes for training,
and the 16 validation classes only for early stopping and parameter tuning.

Architecture: The embedding architecture used for Mini-Imagenet is formed by 4 convolutional
layers followed by a fully-connected layer resulting in a 128 dimensional embedding. This light
architecture is useful for fast prototyping:

1 x {3 x3-conv. layer (64 filters), batch normalization, max pool(2, 2), leaky relu},

1 x {3 x3-conv. layer (96 filters), batch normalization, max pool(2, 2), leaky relu},

1 x {3 x3-conv. layer (128 filters), batch normalization, max pool(2, 2), leaky relu, dropout(0.5)},

1 x {3 x3-conv. layer (256 filters), batch normalization, max pool(2, 2), leaky relu, dropout(0.5)},

1 x{ fc-layer (128 filters), batch normalization}.

The two dropout layers are useful to avoid overfitting the GNN in Mini-Imagenet dataset. The GNN
architecture is similar than for Omniglot, it is formed by 3 blocks, each block 1s described at Figure

3l

